Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm

  • Olawale Titiloye
  • Alan Crispin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6682)


Quantum simulated annealing is analogous to a population of agents cooperating to optimize a shared cost function defined as the total energy between them. A hybridization of quantum annealing with mainstream evolutionary techniques is introduced to obtain an effective solver for the graph coloring problem. The state of the art is advanced by the description of a highly scalable distributed version of the algorithm. Most practical simulated annealing algorithms require the reduction of a control parameter over time to achieve convergence. The algorithm presented is able to keep all its parameters fixed at their initial value throughout the annealing schedule, and still achieve convergence to a global optimum in reasonable time. Competitive results are obtained on challenging problems from the standard DIMACS benchmarks. Furthermore, for some of the graphs, the distributed hybrid quantum annealing algorithm finds better results than those of any known algorithm.


Multi-agent Optimization Quantum Annealing Simulated Annealing Distributed Algorithms Graph Coloring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Physical Review E 58, 5355 (1998)CrossRefGoogle Scholar
  3. 3.
    Das, A., Chakrabarti, B.K.: Quantum Annealing and quantum analog computation. Rev. Mod. Phys. 80, 1061 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling salesman problem. Phys. Rev. E 70, 057701 (2004)CrossRefGoogle Scholar
  5. 5.
    Battaglia, D.A., Santoro, G.E., Tosatti, E.: Optimization by quantum annealing: Lessons from hard satisfiability problems. Phys. Rev. 71, 066707 (2005)Google Scholar
  6. 6.
    Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Malaguti, E., Monaaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS Journal on Computing 20(2), 302–316 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph colouring. Computers and Operations Research 37(1), 1822–1832 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Morita, S., Nishimori, H.: Mathematical foundations of quantum annealing. Journal of Mathematical Physics 49, 12521 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Discrete Optimization (2011), doi:10.1016/j.disopt.2010.12.001Google Scholar
  12. 12.
    Johnson, D.S., Trick, M.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. DIMACS series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  13. 13.
    Morgenstern, C.: Distributed coloration neighborhood search. In: [12], pp. 335–358Google Scholar
  14. 14.
    Cohn, H., Fielding, M.: Simulated annealing: searching for an optimal temperature schedule. SIAM Journal on Optimization 9, 779–802 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Greene, J.A., Supowit, K.J.: Simulated annealing without rejected moves. IEEE Trans.Comput.-Aided Design CAD 5(1), 221–228 (1986)CrossRefGoogle Scholar
  16. 16.
    Gusfield, D.: Partition-distance: a problem and class of perfect graphs arising in clustering. Information Processing Letters 82(3), 159–164 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Applied Mathematics 156(2), 267–279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers and Operations Research 35(3), 960–975 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Olawale Titiloye
    • 1
  • Alan Crispin
    • 1
  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterU.K.

Personalised recommendations