SimZombie: A Case-Study in Agent-Based Simulation Construction

  • Matthew Crossley
  • Martyn Amos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6682)


In this paper we describe a general method for the conversion of an equation-based model to an agent-based simulation. We illustrate the process by converting a well-known recent case-study in epidemiology (zombie infection), and show how we may obtain qualitatively similar results, whilst gaining access to the many benefits of an agent-based implementation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aikman, D., Scaife, A.: Modelling Plant Growth Under Varying Environment Conditions in a Uniform Canopy. Annals of Botany 72(5), 485 (1993)CrossRefGoogle Scholar
  2. 2.
    Allen, L.: Some discrete-time SI, SIR, and SIS epidemic models. Mathematical Biosciences 124(1), 83–105 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Axtell, R.: Why agents?: on the varied motivations for agent computing in the social sciences. Workshop on Agent Simulation: Applications, Models and Tools (2000)Google Scholar
  4. 4.
    Baranyi, J., Roberts, T., McClure, P.: A non-autonomous differential equation to model bacterial growth. Food Microbiology 10(1), 43–59 (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Billari, F., Fent, T., Prskawetz, A., Scheffran, J.: Agent-Based Computational Modelling: Applications in Demography, Social, Economic and Environmental Sciences (Contributions to Economics). Physica-Verlag (2006)Google Scholar
  6. 6.
    Bolch, G.: Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. Wiley-Blackwell (2006)Google Scholar
  7. 7.
    Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America 99(suppl. 3), 7280–7287 (2002), CrossRefGoogle Scholar
  8. 8.
    Brajnik, G., Lines, M.: Qualitative modeling and simulation of socio-economic phenomena. Journal of Artificial Societies and Social Simulation 1(1) (1998),
  9. 9.
    Brauer, F., Van den Driessche, P.: Models for transmission of disease with immigration of infectives. Mathematical Biosciences 171(2), 143–154 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Butcher, J., Corporation, E.: Numerical methods for ordinary differential equations. Wiley Online Library, Chichester (2008)CrossRefGoogle Scholar
  11. 11.
    Draper, N., Smith, H., Pownell, E.: Applied regression analysis, vol. 706. Wiley, New York (1998)Google Scholar
  12. 12.
    Epstein, J.: Modeling civil violence: An agent-based computational approach. Proceedings of the National Academy of Sciences of the United States of America 99(suppl. 3), 7243 (2002)CrossRefGoogle Scholar
  13. 13.
    Epstein, J.M.: Why model? Journal of Artificial Societies and Social Simulation 11(4), 12 (2008),
  14. 14.
    Gagne, P.: The Zombies That Ate Pittsburgh: The Films of George A. Romero. Dodd, Mead (1987)Google Scholar
  15. 15.
    Gilbert, G.: Agent-based models. Sage Publications, Inc., Thousand Oaks (2008)CrossRefGoogle Scholar
  16. 16.
    Gilbert, N., Terna, P.: How to build and use agent-based models in social science. Mind & Society 1(1), 57–72 (2000)CrossRefGoogle Scholar
  17. 17.
    Grimm, V.: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecological Modelling 115(2), 129–148 (1999)CrossRefGoogle Scholar
  18. 18.
    Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation 12(4), 9 (2009), Google Scholar
  19. 19.
    Huston, M., DeAngelis, D., Post, W.: New computer models unify ecological theory. BioScience 38(10), 682–691 (1988)CrossRefGoogle Scholar
  20. 20.
    Klügl, F., Bazzan, A.L.C.: Route decision behaviour in a commuting scenario: Simple heuristics adaptation and effect of traffic forecast. Journal of Artificial Societies and Social Simulation 7(1) (2004),
  21. 21.
    Law, A., Kelton, W., Kelton, W.: Simulation modeling and analysis, vol. 2. McGraw-Hill, New York (1991)zbMATHGoogle Scholar
  22. 22.
    Macy, M., Willer, R.: From Factors to Actors: Computational Sociology and Agent-Based Modeling. Annual Review of Sociology, 143–167 (2002)Google Scholar
  23. 23.
    Munz, P., Hudea, I., Imad, J., Smith, R.: When zombies attack!: Mathematical modelling of an outbreak of zombie infection. In: Tchuenche, J.M., Chiyaka, C. (eds.) Infectious Disease Modelling Research Progress, pp. 133–150. Nova Science Publishers, Hauppauge (2009)Google Scholar
  24. 24.
    Musse, S., Thalmann, D.: A model of human crowd behavior: Group inter-relationship and collision detection analysis. In: Computer Animation and Simulation, Citeseer, vol. 97, pp. 39–51 (1997)Google Scholar
  25. 25.
    Osborne, M., Rubinstein, A.: A course in game theory. The MIT press, Cambridge (1994)zbMATHGoogle Scholar
  26. 26.
    Pogson, M., Smallwood, R., Qwarnstrom, E., Holcombe, M.: Formal agent-based modelling of intracellular chemical interactions. Biosystems 85(1), 37–45 (2006)CrossRefGoogle Scholar
  27. 27.
    Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Management Science 54(5), 998–1014 (2008)CrossRefGoogle Scholar
  28. 28.
    Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34. ACM, New York (1987)Google Scholar
  29. 29.
    Sidrauski, M.: Rational choice and patterns of growth in a monetary economy. The American Economic Review 57(2), 534–544 (1967)Google Scholar
  30. 30.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 205–214. ACM, New York (1987)Google Scholar
  31. 31.
    Van Dyke Parunak, H., Savit, R., Riolo, R.: Agent-based modeling vs. equation-based modeling: A case study and users guide. Multi-Agent Systems and Agent-Based Simulation, 10–25 (1998)Google Scholar
  32. 32.
    Wilson, W.: Resolving discrepancies between deterministic population models and individual-based simulations. American Naturalist 151(2), 116–134 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthew Crossley
    • 1
  • Martyn Amos
    • 1
  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations