Advertisement

A Multi-agent Organizational Model for Grid Scheduling

  • Inès Thabet
  • Issam Bouslimi
  • Chihab Hanachi
  • Khaled Ghédira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6682)

Abstract

Multi-agent technology provides high level organizational concepts (groups, roles, commitments, interaction protocols) to structure, coordinate and ease the adaptation of distributed systems efficiently. This paper proposes to model a grid scheduling system as a multi-agent system organization. The resulting organizational model, based on the Agent Group Role meta-model of Ferber, is evaluated at the conceptual and implementation level. At the conceptual level, we evaluate the efficiency, robustness and flexibility of our model. At the implementation level, the analysis and the evaluation of our proposition, done through simulations, show its efficiency.

Keywords

Multiagent System Task Execution Organizational Model Resource Agent Interaction Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kesselman, C., Foster, I.: The grid: blueprint for a new computing infrastructure. Morgan Kaufmann, San Francisco (2004)Google Scholar
  2. 2.
    Foster, I., Kesselman, C., Jennings, N.: Brain Meets Brawn: Why Grid and Agents Need Each Other. In: 3th International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 8–15. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  3. 3.
    Shi, Z., Huang, H., Luo, J., Lin, F., Zhang, H.: Agent-based grid computing. Applied Mathematical Modelling 30, 629–640 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Patel, J., Teacy, W.T., Jennings, N.R., Luck, M., Chalmers, S., Oren, N., Norman, T.J., Preece, A., Gray, P.M., Shercliff, G., et al.: Agent-based virtual organisations for the grid. Multiagent and Grid Systems 1, 237–249 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Muthuchelvi, P., Anandha Mala, G.S., Ramachandran, V.: Agent Based Grid Resource Discovery with Negotiated Alternate Solution and Non-Functional Requirement Preferences. Journal of Computer Science 5, 191–198 (2009)CrossRefGoogle Scholar
  6. 6.
    Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, S.G.J.: al.: Adaptive computing on the grid using AppLeS. IEEE Transactions on Parallel and Distributed Systems 14, 369–382 (2003)CrossRefGoogle Scholar
  7. 7.
    Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organizational view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Dignum, V.: The Role of Organization in Agent Systems. Multi-agent Systems: Semantics and Dynamics of Organizational Models. IGI (2009)Google Scholar
  9. 9.
    Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent systems. In: The International Conference on Multi Agent Systems, pp. 128–135 (2002)Google Scholar
  10. 10.
    Grossi, D., Dignum, F., Dignum, V., Dastani, M., Royakkers, L.: Structural evaluation of agent organizations. In: 5th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1110–1112. ACM, New York (2006)Google Scholar
  11. 11.
    Kaddoum, E., Gleizes, M.P., Georgé, J.P., Picard, G.: Characterizing and evaluating problem solving self-* systems. In: Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, pp. 137–145 (2009) Google Scholar
  12. 12.
    Madkit Website, http://www.madkit.org/
  13. 13.
    Thabet, I., Hanachi, C., Ghédira, K.: Towards an adaptive grid scheduling: Architecture and protocols specification. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 599–608. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Smith, R.G.: The contract net protocol. IEEE Transactions on High-level communication and control in a distributed problem solver 100, 1104–1113 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Inès Thabet
    • 1
    • 2
  • Issam Bouslimi
    • 1
    • 2
  • Chihab Hanachi
    • 1
  • Khaled Ghédira
    • 2
  1. 1.Institut de Recherche en Informatique de Toulouse IRIT, UMR 5505Université Toulouse 1 CapitoleToulouse Cedex 9France
  2. 2.Stratégie d’Optimisation des Informations et de la ConnaissancEUniversité de TunisTunisTunisie

Personalised recommendations