Advertisement

Abstract

The semantic Web service community develops efforts to bring semantics to Web service descriptions and allow automatic discovery and composition. However, there is no widespread adoption of such descriptions yet, because semantically defining Web services is highly complicated and costly. As a result, production Web services still rely on syntactic descriptions, key-word based discovery and predefined compositions. Hence, more advanced research on syntactic Web services is still ongoing. In this work we build syntactic composition Web services networks with three well known similarity metrics, namely Levenshtein, Jaro and Jaro-Winkler. We perform a comparative study on the metrics performance by studying the topological properties of networks built from a test collection of real-world descriptions. It appears Jaro-Winkler finds more appropriate similarities and can be used at higher thresholds. For lower thresholds, the Jaro metric would be preferable because it detect less irrelevant relationships.

Keywords

Web services Web services Composition Interaction Networks Similarity Metrics Flexible Matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
  2. 2.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/
  3. 3.
    Wu, J., Wu, Z.: Similarity-based Web Service Matchmaking. In: IEEE International Conference on Semantic Computing, Orlando, FL, USA, pp. 287–294 (2005)Google Scholar
  4. 4.
    Ma, J., Zhang, Y., He, J.: Web Services Discovery Based on Latent Semantic Approach. In: International Conference on Web Services, pp. 740–747 (2008)Google Scholar
  5. 5.
    Kil, H., Oh, S.C., Elmacioglu, E., Nam, W., Lee, D.: Graph Theoretic Topological Analysis of Web Service Networks. World Wide Web 12(3), 321–343 (2009)CrossRefGoogle Scholar
  6. 6.
    Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: International Workshop on Information Integration on the Web Acapulco, Mexico, pp. 73–78 (2003)Google Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, Y., Hwang, D.: Complex Networks: Structure and Dynamics. Physics Reports 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications (1994)Google Scholar
  9. 9.
    Newman, M.-E.-J.: The Structure and Function of Complex Networks. SIAM Review 45 (2003)Google Scholar
  10. 10.
  11. 11.
    Rivierre, Y., Cherifi, C., Santucci, J.F.: WS-NEXT: A Web Services Network Extractor Toolkit. In: International Conference on Information Technology, Jordan (2011)Google Scholar
  12. 12.
    Pease, A., Niles, I.: Linking Lexicons and Ontologies: Mapping WordNet to the Suggested Upper Merged Ontology. In: Proceedings of the IEEE International Conference on Information and Knowledge Engineering, pp. 412–416 (2003)Google Scholar
  13. 13.
    Universität Leipzig, Freie Universität Berlin, OpenLink: DBPedia.org website, http://wiki.dbpedia.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chantal Cherifi
    • 1
  • Vincent Labatut
    • 2
  • Jean-François Santucci
    • 1
  1. 1.UMR CNRS, SPE LaboratoryUniversity of CorsicaCorteFrance
  2. 2.Computer Science DepartmentGalatasaray UniversityIstanbulTurkey

Personalised recommendations