Mobile Visualization of Architectural Projects: Quality and Emotional Evaluation Based on User Experience

  • David Fonseca
  • Ernest Redondo
  • Isidro Navarro
  • Marc Pifarré
  • Eva Villegas
Part of the Communications in Computer and Information Science book series (CCIS, volume 166)


The visualization of architectural design has always been associated with physical models, exhibition panels and displays on computer screens, usually in a large format. However, technological developments in the past decades have produced new devices such as handheld PCs, pocket PCs, and Smartphones that have increasingly larger screens and more sophisticated technical characteristics. The emergence of these devices has made both the non expert and advanced user a consumer of such devices. This evolution has created a new workflow that enables on-site management and decision making through the viewing of information on those devices. In this paper, we will study the basic features of the architectural image to provide a better user experience for browsing these types of images on mobile devices’ limited and heterogeneous screen sizes by comparing the results with traditional and immersive environments.


Visualization Small Screen Devices Quality and Emotional Evaluations Image Transcoding and adaptation User Experience 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sousa, R., Nisi, V., Oakley, I.: Glaze: A visualization framework for mobile devices. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5726, pp. 870–873. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Carmo, M.B., Afonso, A.P., Matos, P.P.: Visualization of geographic query results for small screen devices. In: Proceedings of the 4th ACM Workshop on Geographical Information Retrieval (GIR 2007), pp. 63–64. ACM, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Burigat, S., Chittaro, L., Gabrielli, S.: Visualizing locations of off-screen objects on mobile devices: A Comparative Evaluation of Three Approaches. In: Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI 2006), pp. 239–246. ACM, New York (2006)Google Scholar
  4. 4.
    Chen, L., Xie, S., Fan, X., Ma, W.Y., Zhang, H.J., Zhou, H.Q.: A visual attention model for adapting images on small devices. J. Multimed Syst. 9(4), 353–364 (2003)CrossRefGoogle Scholar
  5. 5.
    Fonseca, D., Garcia, O., Duran, J., Pifarre, M., Villegas, E.: An image-centred "search and indexation system" based in user’s data and perceived emotion. In: Proceeding of the 3rd ACM International Workshop on Human-Centered Computing, pp. 27–34. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Fan, X., Xie, X., Ma, W., Zhang, H.Z.: visual attention based image browsing on mobile devices. In: Proceedings of the 2003 International Conference on Multimedia and Expo (ICME), pp. 53–56. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  7. 7.
    Chittaro, L.: Visualizing information on mobile devices. J. Computer 39(3), 40–45 (2006)CrossRefGoogle Scholar
  8. 8.
    Jones, S., Jones, M., Deo, S.: Using keyphrases as search result surrogates on small screen devices. J. Personal and Ubiquitous Computing 8(1), 55–68 (2004)CrossRefGoogle Scholar
  9. 9.
    Smith, J.R., Mohan, R., Li, C.S.: Content-based transcoding of images in the internet. In: Proceedings of 5th Int. Conf. on Image Processing (ICIP 1998), pp. 7–11 (1998)Google Scholar
  10. 10.
    Saidi, K., Hass, C., Balli, N.: The value of handheld computers in construction. In: Proceedings of the 19th International Symposium on Automation and Robotics in Construction, Washington (2002)Google Scholar
  11. 11.
    Lipman, R.: Mobile 3D visualization for steel structures. J. Automation in Construction 13, 119–125 (2004)CrossRefGoogle Scholar
  12. 12.
    Han, R., Bhagwat, P., LaMIare, R., Mummert, T., Perret, V., Rubas, J.: Dynamic Adaptation in an image transcoding proxy for mobile web browsing. J. IEEE Pers. Commun. 5(6), 8–17 (1998)CrossRefGoogle Scholar
  13. 13.
    Ma, W., Bedner, I., Chang, G., Kuchinsky, A., Zhang, H.: Framework for adaptive content delivery in heterogeneous network environments. In: Proceedings of SPIE (Multimedia Comput Network) The Smithsoniana/NASA Astrophysics Data System, pp. 86–100 (2000)Google Scholar
  14. 14.
    Lang, P., Bradley, M., Cuthbert, B.: International affective picture system (IAPS): Technical manual and affective ratings. Technical Report, Gainesville, USA (1997)Google Scholar
  15. 15.
    Houtveen, J., Rietveld, S., Schoutrop, M., Spiering, M., Brosschot, J.: A repressive coping style and affective, facial and physiological responses to looking at emotional pictures. J. of Psychophysiology 42, 265–277 (2001)CrossRefGoogle Scholar
  16. 16.
    Aguilar, F., Verdejo, A., Peralta, M., Sánchez, M., Pérez, M.: Expirience of emotions in substance abusers exposed to images containing neutral, positive, and negative affective stimuli. J. Drug and Alcohol Dependece 78, 159–167 (2005)CrossRefGoogle Scholar
  17. 17.
    Verschuere, B., Crombez, G., Koster, E.: Cross cultural validation of the IAPS. Technical report, Ghent University, Belgium (2007)Google Scholar
  18. 18.
    Bernier, R.: An introduction to JPEG 2000. J. Library Hi Tech News 23(7), 26–27 (2006)CrossRefGoogle Scholar
  19. 19.
    Hughitt, V., Ireland, J., Mueller, D., Simitoglu, G., Garcia Ortiz, J., Schmidt, L., Wamsler, B., Beck, J., Alexandarian, A., Fleck, B.: Browsing very large image archives online using JPEG2000. In: American Geophysical Union, Fall Meeting, Smithsonian/NASA Astrophysics Data (2009)Google Scholar
  20. 20.
    Rosenbaum, R., Schumann, H.: JPEG2000-based image communication for modern browsing techniques. In: Proceedings of the SPIE (Image and Video Communications and Processing) International Society for Optical Engineering, pp. 1019–1030 (2005)Google Scholar
  21. 21.
    Fonseca, D., Garcia, O., Navarro, I., Duran, J., Villegas, E., Pifarre, M.: Iconographic web image classification based on open source technology. In: IIIS Proceedings of the 13th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2009), Orlando, vol. 3, pp. 184–189 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Fonseca
    • 1
  • Ernest Redondo
    • 2
  • Isidro Navarro
    • 2
  • Marc Pifarré
    • 1
  • Eva Villegas
    • 1
  1. 1.GTAM – Grup de Recerca en Tecnologies Mèdia, Enginyeria La SalleUniversitat Ramon LlullBarcelonaSpain
  2. 2.Departamento de Expresión Gráfica Arquitectónica IUniversidad Politécnica de Cataluña. Barcelona Tech. Escuela Técnica, Superior de Arquitectura de Barcelona, ETSABBarcelonaSpain

Personalised recommendations