Advertisement

Adaptive and Statistical Polygonal Curve for Multiple Weld Defects Detection in Radiographic Images

  • Aicha Baya Goumeidane
  • Mohammed Khamadja
  • Nafaa Nacereddine
Part of the Communications in Computer and Information Science book series (CCIS, volume 166)

Abstract

With the advances in computer science and artificial intelligence techniques, the opportunity to develop computer aided technique for radiographic inspection in Non Destructive Testing arose. This paper presents an adaptive probabilistic region-based deformable model using an explicit representation that aims to extract automatically defects from a radiographic film. To deal with the height computation cost of such model, an adaptive polygonal representation is used and the search space for the greedy-based model evolution is reduced. Furthermore, we adapt this explicit model to handle topological changes in presence of multiple defects.

Keywords

Radiographic inspection explicit deformable model adaptive contour representation Maximum likelihood criterion Multiple contours 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halmshaw, R.: The Grid: Introduction to the Non-Destructive Testing in Welded Joints. Woodhead Publishing, Cambridge (1996)CrossRefGoogle Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision, 321–331 (1988)Google Scholar
  3. 3.
    Xu, C., Prince, J.: Snakes, Shapes, and gradient vector flow. IEEE Transactions on Images Processing 7(3), 359–369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Trans. on Image Proc. 13(9), 1231–1244 (2004)CrossRefGoogle Scholar
  5. 5.
    Tauber, C., Batatia, H., Morin, G., Ayache, A.: Robust b-spline snakes for ultra- sound image segmentation. IEEE Computers in Cardiology 31, 25–28 (2004)Google Scholar
  6. 6.
    Zimmer, C., Olivo-Marin, J.C.: Coupled parametric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1838–1842 (2005)CrossRefGoogle Scholar
  7. 7.
    Srikrishnan, V., Chaudhuri, S., Roy, S.D., Sevcovic, D.: On Stabilisation of Parametric Active Contours. In: CVPR 2007, pp. 1–6 (2007)Google Scholar
  8. 8.
    Li, B., Acton, S.T.: Active Contour External Force Using Vector Field Convolution for Image Segmentation. IEEE Trans. on Image Processing 16(8), 2096–2106 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, B., Acton, S.T.: Automatic Active Model Initialization via Poisson Inverse Gradient. IEEE Trans. on Image Processing 17(8), 1406–1420 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Collewet, C.: Polar snakes: A fast and robust parametric active contour model. In: IEEE Int. Conf. on Image Processing, pp. 3013–3016 (2009)Google Scholar
  11. 11.
    Wang, Y., Liu, L., Zhang, H., Cao, Z., Lu, S.: Image Segmentation Using Active Contours With Normally Biased GVF External Force. IEEE signal Processing 17(10), 875–878 (2010)CrossRefGoogle Scholar
  12. 12.
    Ronfard, R.: Region based strategies for active contour models. IJCV 13(2), 229–251 (1994)CrossRefGoogle Scholar
  13. 13.
    Dias, J.M.B.: Adaptive bayesian contour estimation: A vector space representation approach. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 157–173. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Jardim, S.M.G.V.B., Figuerido, M.A.T.: Segmentation of Fetal Ultrasound Images. Ultrasound in Med. & Biol. 31(2), 243–250 (2005)CrossRefGoogle Scholar
  15. 15.
    Ivins, J., Porrill, J.: Active region models for segmenting medical images. In: Proceedings of the IEEE Internation Conference on Image Processing (1994)Google Scholar
  16. 16.
    Abd-Almageed, W., Smith, C.E.: Mixture models for dynamic statistical pressure snakes. In: IEEE International Conference on Pattern Recognition (2002)Google Scholar
  17. 17.
    Abd-Almageed, W., Ramadan, S., Smith, C.E.: Kernel Snakes: Non-parametric Active Contour Models. In: IEEE International Conference on Systems, Man and Cybernetics (2003)Google Scholar
  18. 18.
    Goumeidane, A.B., Khamadja, M., Naceredine, N.: Bayesian Pressure Snake for Weld Defect Detection. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 309–319. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Chesnaud, C., Réfrégier, P., Boulet, V.: Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models. IEEE Transaction on PAMI 21(11), 1145–1157 (1999)CrossRefGoogle Scholar
  20. 20.
    Nacereddine, N., Hammami, L., Ziou, D., Goumeidane, A.B.: Region-based active contour with adaptive B-spline. Application in radiographic weld inspection. Image Processing & Communications 15(1), 35–45 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aicha Baya Goumeidane
    • 1
  • Mohammed Khamadja
    • 2
  • Nafaa Nacereddine
    • 1
  1. 1.Centre de recherche Scientifique et Technique en Soudage et Controle, (CSC)Cheraga AlgerAlgeria
  2. 2.SP_Lab, Electronic Dept.Mentouri UniversityConstantineAlgeria

Personalised recommendations