AR-Drone as a Platform for Robotic Research and Education

  • Tomáš Krajník
  • Vojtěch Vonásek
  • Daniel Fišer
  • Jan Faigl
Part of the Communications in Computer and Information Science book series (CCIS, volume 161)

Abstract

This paper presents the AR-Drone quadrotor helicopter as a robotic platform usable for research and education. Apart from the description of hardware and software, we discuss several issues regarding drone equipment, abilities and performance. We show, how to perform basic tasks of position stabilization, object following and autonomous navigation. Moreover, we demonstrate the drone ability to act as an external navigation system for a formation of mobile robots. To further demonstrate the drone utility for robotic research, we describe experiments in which the drone has been used. We also introduce a freely available software package, which allows researches and students to quickly overcome the initial problems and focus on more advanced issues.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. In: International Symposium on Experimental Robotics, Delhi, India (2010)Google Scholar
  2. 2.
    Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: SPIE Unmanned Systems Technology XI, Orlando, F, vol. 7332 (2009)Google Scholar
  3. 3.
    Blöandsch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: IEEE Int. Conf. on Robotics and Automation, pp. 21–28 (2010)Google Scholar
  4. 4.
    Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Autonomous Robots 30, 73–86 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Multicopter: List of helicopter projects (2011), http://multicopter.org/wiki/
  6. 6.
    Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor environments using single image perspective cues. In: IEEE Int. Conf. on Robotics and Automation (2011)Google Scholar
  7. 7.
    Bills, C., Yosinski, J.: MAV stabilization using machine learning and onboard sensors. Technical Report CS6780, Cornell University (2010)Google Scholar
  8. 8.
    Faigl, J., Krajník, T., Vonásek, V.: Přeučil, L.: Surveillance planning with localization uncertainty for mobile robots. In: 3rd Israeli Conference on Robotics (2010)Google Scholar
  9. 9.
    Ng, W.S., Sharlin, E.: Collocated interaction with flying robots. Technical Report 2011-998-10, Dept. of Computer Science, University of Calgary, Canada (2011)Google Scholar
  10. 10.
    Higuchi, K., Shimada, T., Rekimoto, J.: Flying sports assistant: external visual imagery representation for sports training. In: 2nd Augmented Human International Conference, pp. 7:1–7:4. ACM, New York (2011)Google Scholar
  11. 11.
    Krajník, T.: Simple ‘getting started’ applications for AR-drone (2011), http://labe.felk.cvut.cz/~tkrajnik/ardrone
  12. 12.
    Šolc, F.: Modelling and control of a quadrocopter. Advanced in Military Technology 1, 29–38 (2007)Google Scholar
  13. 13.
    Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)MATHGoogle Scholar
  14. 14.
    Krajník, T., Faigl, J., Vonásek, V., Košnar, K., Kulich, M., Přeučil, L.: Simple yet stable bearing-only navigation. Journal of Field Robotics 27, 511–533 (2010)CrossRefGoogle Scholar
  15. 15.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110, 346–359 (2008)CrossRefGoogle Scholar
  16. 16.
    Saska, M., Vonásek, V., Přeučil, L.: Roads sweeping by unmanned multi-vehicle formations. In: IEEE Int. Conf. on Robotics and Automation (2011)Google Scholar
  17. 17.
    Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44, 1343–1349 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Spitz, S.N., Requicha, A.A.G.: Multiple-Goals Path Planning for Coordinate Measuring Machines. In: IEEE Int. Conf. on Robotics and Automation, pp. 2322–2327 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tomáš Krajník
    • 1
  • Vojtěch Vonásek
    • 1
  • Daniel Fišer
    • 1
  • Jan Faigl
    • 1
  1. 1.The Gerstner Laboratory for Intelligent Decision Making and Control, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PragueCzech Republic

Personalised recommendations