Skip to main content

AR-Drone as a Platform for Robotic Research and Education

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 161))

Abstract

This paper presents the AR-Drone quadrotor helicopter as a robotic platform usable for research and education. Apart from the description of hardware and software, we discuss several issues regarding drone equipment, abilities and performance. We show, how to perform basic tasks of position stabilization, object following and autonomous navigation. Moreover, we demonstrate the drone ability to act as an external navigation system for a formation of mobile robots. To further demonstrate the drone utility for robotic research, we describe experiments in which the drone has been used. We also introduce a freely available software package, which allows researches and students to quickly overcome the initial problems and focus on more advanced issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. In: International Symposium on Experimental Robotics, Delhi, India (2010)

    Google Scholar 

  2. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: SPIE Unmanned Systems Technology XI, Orlando, F, vol. 7332 (2009)

    Google Scholar 

  3. Blöandsch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: IEEE Int. Conf. on Robotics and Automation, pp. 21–28 (2010)

    Google Scholar 

  4. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Autonomous Robots 30, 73–86 (2011)

    Article  MATH  Google Scholar 

  5. Multicopter: List of helicopter projects (2011), http://multicopter.org/wiki/

  6. Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor environments using single image perspective cues. In: IEEE Int. Conf. on Robotics and Automation (2011)

    Google Scholar 

  7. Bills, C., Yosinski, J.: MAV stabilization using machine learning and onboard sensors. Technical Report CS6780, Cornell University (2010)

    Google Scholar 

  8. Faigl, J., Krajník, T., Vonásek, V.: Přeučil, L.: Surveillance planning with localization uncertainty for mobile robots. In: 3rd Israeli Conference on Robotics (2010)

    Google Scholar 

  9. Ng, W.S., Sharlin, E.: Collocated interaction with flying robots. Technical Report 2011-998-10, Dept. of Computer Science, University of Calgary, Canada (2011)

    Google Scholar 

  10. Higuchi, K., Shimada, T., Rekimoto, J.: Flying sports assistant: external visual imagery representation for sports training. In: 2nd Augmented Human International Conference, pp. 7:1–7:4. ACM, New York (2011)

    Google Scholar 

  11. Krajník, T.: Simple ‘getting started’ applications for AR-drone (2011), http://labe.felk.cvut.cz/~tkrajnik/ardrone

  12. Šolc, F.: Modelling and control of a quadrocopter. Advanced in Military Technology 1, 29–38 (2007)

    Google Scholar 

  13. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  14. Krajník, T., Faigl, J., Vonásek, V., Košnar, K., Kulich, M., Přeučil, L.: Simple yet stable bearing-only navigation. Journal of Field Robotics 27, 511–533 (2010)

    Article  Google Scholar 

  15. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110, 346–359 (2008)

    Article  Google Scholar 

  16. Saska, M., Vonásek, V., Přeučil, L.: Roads sweeping by unmanned multi-vehicle formations. In: IEEE Int. Conf. on Robotics and Automation (2011)

    Google Scholar 

  17. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44, 1343–1349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spitz, S.N., Requicha, A.A.G.: Multiple-Goals Path Planning for Coordinate Measuring Machines. In: IEEE Int. Conf. on Robotics and Automation, pp. 2322–2327 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajník, T., Vonásek, V., Fišer, D., Faigl, J. (2011). AR-Drone as a Platform for Robotic Research and Education. In: Obdržálek, D., Gottscheber, A. (eds) Research and Education in Robotics - EUROBOT 2011. EUROBOT 2011. Communications in Computer and Information Science, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21975-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21975-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21974-0

  • Online ISBN: 978-3-642-21975-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics