Advertisement

Benaloh’s Dense Probabilistic Encryption Revisited

  • Laurent Fousse
  • Pascal Lafourcade
  • Mohamed Alnuaimi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6737)

Abstract

In 1994, Josh Benaloh proposed a probabilistic homomorphic encryption scheme, enhancing the poor expansion factor provided by Goldwasser and Micali’s scheme. Since then, numerous papers have taken advantage of Benaloh’s homomorphic encryption function, including voting schemes, private multi-party trust computation, non-interactive verifiable secret sharing, online poker. In this paper we show that the original description of the scheme is incorrect, because it can result in ambiguous decryption of ciphertexts. Then we show on several applications that a bad choice in the key generation phase of Benaloh’s scheme has a real impact on the behaviour of the application. For instance in an e-voting protocol, it can inverse the result of an election. Our main contribution is a corrected description of the scheme (we provide a complete proof of correctness). Moreover we also compute the probability of failure of the original scheme. Finally we show how to formulate the security of the corrected scheme in a generic setting suitable for several homomorphic encryptions.

Keywords

public-key encryption probabilistic encryption homomorphic encryption scheme Benaloh’s scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Suzuki, K.: M+1-st price auction using homomorphic encryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Akinwande, M.: Advances in Homomorphic Cryptosystems. Journal of Universal Computer Science 15(3), 506–522 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Benaloh, J.: Dense Probabilistic Encryption. In: Proceedings of the Workshop on Selected Areas of Cryptography, pp. 120–128 (1994)Google Scholar
  4. 4.
    Benaloh, J., Tuinstra, D.: Receipt-free Secret-Ballot Elections (extended abstract). In: STOC 1994: Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, pp. 544–553. ACM, New York (1994)CrossRefGoogle Scholar
  5. 5.
    Benaloh, J.D.C.: Verifiable Secret-Ballot Elections. PhD thesis, Yale University, New Haven, CT, USA (1987)Google Scholar
  6. 6.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Fontaine, C., Galand, F.: A Survey of Homomorphic Encryption for Nonspecialists. In: EURASIP Journal on Information Security. Hindawi Publishing Corporation (2007)Google Scholar
  8. 8.
    Chen, X., Lee, B., Kim, K.: Receipt-free electronic auction schemes using homomorphic encryption. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 259–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure election scheme (extended abstract). In: 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, October 21-23, pp. 372–382. IEEE, Los Alamitos (1985)Google Scholar
  10. 10.
    Benaloh, J.C.: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Proc. International Conference on the Theory and Application of Cryptographic Techniques (EUROCRYPT ’97), Konstanz, Germany. lncs, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority secret-ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homomorphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of paillier’s public-key system with applications to electronic voting. Int. J. Inf. Sec. 9(6), 371–385 (2010)CrossRefGoogle Scholar
  16. 16.
    Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Dolev, S., Gilboa, N., Kopeetsky, M.: Computing Multi-Party Trust Privately: in O(n) time units sending one (possibly large) message at a time. In: SAC 2010: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1460–1465. ACM, New York (2010)Google Scholar
  19. 19.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, pp. 169–178. ACM Press, New York (2009)Google Scholar
  22. 22.
    Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Gjøsteen, K.: Homomorphic cryptosystems based on subgroup membership problems. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 314–327. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/11554868_22 CrossRefGoogle Scholar
  25. 25.
    Goldwasser, S., Micali, S.: Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information. In: STOC, pp. 365–377 (1982)Google Scholar
  26. 26.
    Golle, P.: Dealing Cards in Poker Games. In: Proc. of ITCC 2005 E-Gaming Track (2005)Google Scholar
  27. 27.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptology 23(4), 546–579 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Jha, S., Kruger, L., McDaniel, P.: Privacy preserving clustering. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–417. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Gaudry, P., Montgomery, P.L., Osvik, D.A., Riele, H.T., Timofeev, A., Zimmermann, P.: Factorization of a 768-bit RSA modulus (2010)Google Scholar
  31. 31.
    Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Naccache, D., Stern, J.: A New Public Key Cryptosystem Based on Higher Residues. In: ACM Conference on Computer and Communications Security, pp. 59–66 (1998)Google Scholar
  33. 33.
    Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring (Lecture Notes in Computer Science). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  34. 34.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  35. 35.
    Pollard, J.M.: Theorems on Factorization and Primality Testing. Mathematical Proceedings of the Cambridge Philosophical Society 76(03), 521–528 (1974), doi:10.1017/S0305004100049252MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Rappe, D.K.: Homomorphic Cryptosystems and their Applications. Cryptology ePrint Archive, Report 2006/001 (2006), http://eprint.iacr.org/
  37. 37.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ruiz, A., Villar, J.L.: Publicly Verifiable Secret Sharing from Paillier’s Cryptosystem. In: Wolf, C., Lucks, S., Yau, P.-W. (eds.) WEWoRC. LNI, vol. 74, pp. 98–108. GI (2005)Google Scholar
  39. 39.
    Sako, K., Kilian, J.: Secure Voting Using Partially Compatible Homomorphisms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 411–424. Springer, Heidelberg (1994)Google Scholar
  40. 40.
    Sander, T., Young, A., Yung, M.: Non-Interactive CryptoComputing for NC1. In: FOCS, pp. 554–567 (1999)Google Scholar
  41. 41.
    Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Stein, W.A., et al.: Sage Mathematics Software (Version 4.5.1). The Sage Development Team (2010), http://www.sagemath.org
  43. 43.
    Suzuki, K., Yokoo, M.: Secure generalized vickrey auction using homomorphic encryption. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 239–249. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  44. 44.
    Tatebayashi, M., Matsuzaki, N., Newman Jr., D.B.: Key distribution protocol for digital mobile communication systems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 324–334. Springer, Heidelberg (1990)Google Scholar
  45. 45.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Laurent Fousse
    • 1
  • Pascal Lafourcade
    • 2
  • Mohamed Alnuaimi
    • 3
  1. 1.Laboratoire Jean KuntzmannUniversit Grenoble 1, CNRSFrance
  2. 2.Universit Grenoble 1, CNRSVerimagFrance
  3. 3.Global Communication & Software SystemsUnited Arab Emirates

Personalised recommendations