Advertisement

Hashing into Hessian Curves

  • Reza Rezaeian Farashahi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6737)

Abstract

We describe a hashing function from the elements of the finite field \(\mathbb{F}_q\) into points on a Hessian curve. Our function features the uniform and smaller size for the cardinalities of almost all fibers compared with the other known hashing functions for elliptic curves. For ordinary Hessian curves, this function is 2 : 1 for almost all points. More precisely, for odd q, the cardinality of the image set of the function is exactly given by (q + i + 2)/2 for some i = − 1,1.

Next, we present an injective hashing function from the elements of ℤ m into points on a Hessian curve over \(\mathbb{F}_q\) with odd q and m = (q + i)/2 for some i = − 1,1,3.

Keywords

Elliptic curve cryptography Hessian curve hashing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.hyperelliptic.org/EFD/
  3. 3.
    Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics 7(4), 385–434 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dalen, K.: On a theorem of Stickelberger. Math. Scand. 3, 124–126 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Farashahi, R.R., Fouque, P.-A., Shparlinski, I., Tibouchi, M., Voloch, F.: Indifferentiable deterministic hashing to elliptic and hyperelliptic curves. Cryptology ePrint Archive, Report 2010/539 (2010), http://eprint.iacr.org/2010/539
  8. 8.
    Farashahi, R.R., Joye, M.: Efficient Arithmetic on Hessian Curves. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 243–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Farashahi, R.R., Shparlinski, I., Voloch, F.: On hashing into elliptic curves. J. Math. Cryptology 3, 353–360 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fouque, P.-A., Tibouchi, M.: Estimating the size of the image of deterministic hash functions to elliptic curves. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 81–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Fouque, P.-A., Tibouchi, M.: Deterministic encoding and hashing to odd hyperelliptic curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 265–277. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Hesse, O.: Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. Journal Für Die Reine und Angewandte Mathematik 10, 68–96 (1844)CrossRefGoogle Scholar
  13. 13.
    Hisil, H., Carter, G., Dawson, E.: New formulæ for efficient elliptic curve arithmetic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 138–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Faster group operations on elliptic curves. In: Brankovic, L., Susilo, W. (eds.) AISC 2009, vol. 98, pp. 7–19 (2009)Google Scholar
  15. 15.
    Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev. 26(5), 5–26 (1996)CrossRefGoogle Scholar
  17. 17.
    Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–410. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Kammerer, J.-G., Lercier, R., Renault, G.: Encoding points on hyperelliptic curves over finite fields in deterministic polynomial time. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 278–297. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Lidl, R., Niederreiter, H.: Finite fields. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  20. 20.
    Shallue, A., van de Woestijne, C.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Smart, N.P.: The hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Stickelberger, L.: Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper. In: Verh. 1 Internat. Math. Kongresses, Zürich, Leipzig, pp. 182–193 (1897)Google Scholar
  23. 23.
    Swan, R.G.: Factorization of Polynomials over Finite Fields. Pac. J. Math. 19, 1099–1106 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull. Polish Acad. Sci. Math. 55(2), 97–104 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Vishne, U.: Factorization of Trinomials over Galois Fields of Characteristic 2. Finite Fields and Their Applications 3, 370–377 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Reza Rezaeian Farashahi
    • 1
  1. 1.Department of ComputingMacquarie UniversitySydneyAustralia

Personalised recommendations