KlaperSuite: An Integrated Model-Driven Environment for Reliability and Performance Analysis of Component-Based Systems

  • Andrea Ciancone
  • Antonio Filieri
  • Mauro Luigi Drago
  • Raffaela Mirandola
  • Vincenzo Grassi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6705)


Automatic prediction tools play a key role in enabling the application of non-functional requirements analysis to selection and assembly of components for Component-Based Systems, reducing the need for strong mathematical skills to software designers. Exploiting the paradigm of Model Driven Engineering (MDE), it is possible to automate transformations from design models to analytical models, enabling for formal property verification. MDE is the core paradigm of KlaperSuite presented in this paper, which exploits the KLAPER pivot language to fill the gap between Design and Analysis of Component-Based Systems for reliability and performance properties. KlaperSuite is a family of tools empowering designers with the ability to capture and analyze QoS views of their systems by building a one-click bridge towards a number of established verification instruments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, C.U., Williams, L.G.: Performance and Scalability of Distributed Software Architectures: an SPE Approach. Addison-Wesley, Reading (2002)Google Scholar
  2. 2.
    Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: A survey. IEEE Transactions on Software Engineering 30(5), 295–310 (2004)CrossRefGoogle Scholar
  3. 3.
    Koziolek, H.: Performance evaluation of component-based software systems: A survey. Perform. Eval. 67(8), 634–658 (2010)CrossRefGoogle Scholar
  4. 4.
    Crnkovic, I.: Building Reliable Component-Based Software Systems. Artech House, Inc., Norwood (2002)zbMATHGoogle Scholar
  5. 5.
    Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)zbMATHGoogle Scholar
  6. 6.
    Object Management Group: UML 2.0 superstructure specification (2002)Google Scholar
  7. 7.
    Atkinson, C., Kühne, T.: Model-driven development: A metamodeling foundation. IEEE Softw. 20(5), 36–41 (2003)CrossRefGoogle Scholar
  8. 8.
    Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-driven performance prediction. Journal of Systems and Software 82(1), 3–22 (2009)CrossRefGoogle Scholar
  9. 9.
    Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Performance by unified model analysis (puma). In: WOSP 2005: Proceedings of the 5th International Workshop on Software and Performance, pp. 1–12. ACM Press, New York (2005)Google Scholar
  10. 10.
    Wosp: Proceedings of the international workshop on software and performance (1998-2010)Google Scholar
  11. 11.
    Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and performance/reliability models of component-based systems: A model-driven approach. J. Syst. Softw. 80(4), 528–558 (2007)CrossRefGoogle Scholar
  12. 12.
    Gu, G.P., Petriu, D.C.: From uml to lqn by xml algebra-based model transformations. In: WOSP 2005: Proceedings of the 5th International Workshop on Software and Performance, pp. 99–110. ACM Press, New York (2005)Google Scholar
  13. 13.
    Object Management Group: MOF version 2.0, ptc/04-10-15 (2004)Google Scholar
  14. 14.
    Foundation, T.E.: Project website (2010),
  15. 15.
    Horgan, J., Mathur, A.: Software testing and reliability. The Handbook of Software Reliability Engineering, 531–565 (1996)Google Scholar
  16. 16.
    Cheung, R.C.: A user-oriented software reliability model. IEEE Trans. Softw. Eng. 6(2), 118–125 (1980)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)CrossRefzbMATHGoogle Scholar
  18. 18.
    Reynolds, M.: An axiomatization of pctl*. Information and Computation 201(1), 72–119 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Kwiatkowska, M., Norman, G., Parker, D.: Prism 2.0: a tool for probabilistic model checking. In: Proceedings First International Conference on the Quantitative Evaluation of Systems, QEST 2004, pp. 322–323 (2004)Google Scholar
  21. 21.
    Katoen, J.-P., Khattri, M., Zapreevt, I.S.: A markov reward model checker. In: Second International Conference on the Quantitative Evaluation of Systems, pp. 243–244 (2005)Google Scholar
  22. 22.
    Baier, C., Katoen, J., et al.: Principles of model checking (2008)Google Scholar
  23. 23.
    Group, O.M.: Qvt 1.0 specification (2008),
  24. 24.
    Efftinge, S., Kadura, C.: Xpand language reference (2006)Google Scholar
  25. 25.
    Goseva-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability assessment of software systems. Performance Evaluation 45(2-3), 179 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars, and monotone systems of nonlinear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 340–352. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Consortium, Q.I.: Project website (2010),
  28. 28.
    Rolia, J.A., Sevcik, K.C.: The method of layers. IEEE Transactions on Software Engineering 21(8), 689–700 (1995)CrossRefGoogle Scholar
  29. 29.
    Randazzo, E.: A Model-Based Approach to Performance and Reliability Prediction. PhD thesis, Universitá degli Studi di Roma - Tor Vergata (2010)Google Scholar
  30. 30.
    Immonen, A., Niemelä, E.: Survey of reliability and availability prediction methods from the viewpoint of software architecture. Software and System Modeling 7(1), 49–65 (2008)CrossRefGoogle Scholar
  31. 31.
    Bernardi, S., Merseguer, J., Petriu, D.C.: Adding dependability analysis capabilities to the MARTE profile. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 736–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and resources for generating performance models from uml designs. Software and System Modeling 6(2), 163–184 (2007)CrossRefGoogle Scholar
  33. 33.
    Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann, K., Koziolek, H., Mirandola, R., Hummel, B., Meisinger, M., Pfaller, C.: CoCoME - the common component modeling example. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp. 16–53. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An intermediate language for model-driven predictive analysis of performance and reliability. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Grassi, V., Mirandola, R., Randazzo, E.: Model-driven assessment of qoS-aware self-adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 201–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Perez-Palacin, D., Mirandola, R., Merseguer, J., Grassi, V.: Qos-based model driven assessment of adaptive reactive systems. In: Proceedings of the 2010 Third International Conference on Software Testing, Verification, and Validation Workshops,ICSTW 2010, pp. 299–308. IEEE Computer Society Press, Washington, DC, USA (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrea Ciancone
    • 1
  • Antonio Filieri
    • 1
  • Mauro Luigi Drago
    • 1
  • Raffaela Mirandola
    • 1
  • Vincenzo Grassi
    • 2
  1. 1.Politecnico di MilanoMilanoItaly
  2. 2.Università di Roma “Tor Vergata”RomaItaly

Personalised recommendations