MOSCFRA: A Multi-objective Genetic Approach for Simultaneous Clustering and Gene Ranking

  • Kartick Chandra Mondal
  • Anirban Mukhopadhyay
  • Ujjwal Maulik
  • Sanghamitra Bandhyapadhyay
  • Nicolas Pasquier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6685)

Abstract

Microarray experiments generate a large amount of data which is used to discover the genetic background of diseases and to know the characteristics of genes. Clustering the tissue samples according to their co-expressed behavior and characteristics is an important tool for partitioning the dataset. Finding the clusters of a given dataset is a difficult task. This task of clustering is even more difficult when we try to find the rank of each gene, which is known as Gene Ranking, according to their abilities to distinguish different classes of samples. In the literature, many algorithms are available for sample clustering and gene ranking or selection, separately. A few algorithms are also available for simultaneous clustering and feature selection. In this article, we have proposed a new approach for clustering the samples and ranking the genes, simultaneously. A novel encoding technique for the chromosomes is proposed for this purpose and the work is accompleshed using a multi-objective evolutionary technique. Results have been demonstrated for both artificial and real-life gene expression data sets.

Keywords

Multi-objective Evolutionary Algorithm Gene Ranking Clustering Gene Expression Data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knowles, J.D., Corne, D.W.: Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimization. In: Congress on Evolutionary Computation (CEC 1999), vol. 1, pp. 98–105. IEEE Press, Piscataway (1999)Google Scholar
  2. 2.
    Ben-Dor, A., et al.: Clustering gene expression patterns. Journal of Computational Biology 6, 281–297 (1999)CrossRefGoogle Scholar
  3. 3.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, Inc., New York (1973)MATHGoogle Scholar
  4. 4.
    Guyon, I., Elissee, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)MATHGoogle Scholar
  5. 5.
    Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Theodoridis, S., Koutroubas, K.: Pattern Recognition. Academic Press, London (1999)Google Scholar
  7. 7.
    Halkidi, M., Vazirgiannis, M., Batistakis, Y.: Quality scheme assessment in the clustering process. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 265–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Rezaee, R., Lelieveldt, B.P.F., Reiber, J.H.C.: A New Cluster Validity Index for the Fuzzy c-Mean. Pattern Recognition Letters 19, 237–246 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Sharma, S.C.: Applied Multivariate Techniques. John Wiley and Sons, Chichester (1996)Google Scholar
  10. 10.
    Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Transaction on P.A.M.I. 13(4), 841–846 (1991)CrossRefGoogle Scholar
  11. 11.
    Davies, D., Bouldin, D.: A cluster separation measure. IEEE Transaction on P.A.M.I 1(2), 224–227 (1979)CrossRefGoogle Scholar
  12. 12.
    Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3(3), 32–57 (1973)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12) (December 2002)Google Scholar
  14. 14.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multi-objective Genetic Algorithm based Fuzzy Clustering of Categorical Attributes. IEEE Transactions on Evolutionary Computation 13(5), 991–1005 (2009)CrossRefGoogle Scholar
  15. 15.
    Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary Computation 12(3), 269–283 (2008)CrossRefGoogle Scholar
  16. 16.
    Zhang, C., Lu, X., Zhang, X.: Significance of gene ranking for classification of microarray samples. IEEE/ACM Transaction on Computational Biology and Bioinformatics 3(3), 312–320 (2006)CrossRefGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)MATHGoogle Scholar
  18. 18.
    Jong, K., Mary, J., Cornuéjols, A., Marchiori, E., Sebag, M.: Ensemble feature ranking. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 267–278. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Streib, F.E., Dehmer, M., Liu, J., Muhlhuser, M.: A systems approach to gene ranking from dna microarray data of cervical cancer. In: World Academy of Science, Engineering and Technology, vol. 8 (October 2005)Google Scholar
  20. 20.
    Sharan, R.: Click and expander: a system for clustering and visualizing gene expression data. Bioinformatics 19, 1787–1799 (2003)CrossRefGoogle Scholar
  21. 21.
    Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: ICML (2005)Google Scholar
  22. 22.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kartick Chandra Mondal
    • 1
  • Anirban Mukhopadhyay
    • 2
  • Ujjwal Maulik
    • 3
  • Sanghamitra Bandhyapadhyay
    • 4
  • Nicolas Pasquier
    • 1
  1. 1.I3S Laboratory (CNRS UMR-6070)University of Nice Sophia-AntipolisNiceFrance
  2. 2.Department of Computer Science and EngineeringUniversity of KalyaniKalyaniIndia
  3. 3.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia
  4. 4.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations