Argumentation in the View of Modal Logic

  • Davide Grossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6614)


The paper presents a study of abstract argumentation theory from the point of view of modal logic. The key thesis upon which the paper builds is that argumentation frameworks can be studied as Kripke frames. This simple observation allows us to import a number of techniques and results from modal logic to argumentation theory, and opens up new interesting avenues for further research. The paper gives a glimpse of the sort of techniques that can be imported, discussing complete calculi for argumentation, adequate model-checking and bisimulation games, and sketches an agenda for future research at the interface of modal logic and argumentation theory.


Argumentation theory modal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (forthcoming)Google Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Caminada, M.: Semi-stable semantics. In: Dunne, P.E., Bench-Capon, T. (eds.) Proceedings of Computational Models of Argument, COMMA 2006, pp. 121–130 (2006)Google Scholar
  5. 5.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  6. 6.
    van Ditmarsch, H., Kooi, B., van der Hoek, W.: Dynamic Epistemic Logic. Synthese Library Series, vol. 337. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dunne, P., Bench-Capon, T.: Complexity and combinatorial properties of argument systems. Technical report, University of Liverpool (2001)Google Scholar
  9. 9.
    Fine, K.: Propositional quantifiers in modal logic. Theoria 36, 336–346 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fine, K.: In so many possible worlds. Notre Dame Journal of Formal Logic 13, 516–520 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 249–329. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  12. 12.
    Grossi, D.: Doing argumentation theory in modal logic. ILLC Prepublication Series PP-2009-24, Institute for Logic, Language and Computation (2009)Google Scholar
  13. 13.
    Grossi, D.: On the logic of argumentation theory. In: van der Hoek, W., Kaminka, G., Lespérance, Y., Sen, S. (eds.) Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), IFAAMAS, pp. 409–416 (2010)Google Scholar
  14. 14.
    Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumentation frameworks. In: Rahwan, Y., Simari, G. (eds.) Argumentation in AI. Springer, Heidelberg (2009)Google Scholar
  15. 15.
    Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation frameworks. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference (KR 2010), May 9–13. AAAI Press, Toronto (2010)Google Scholar
  16. 16.
    Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Handbook of Philosophical Logic, 2nd edn., vol. IV, pp. 218–319 (2002)Google Scholar
  17. 17.
    de Rijke, M.: A note on graded modal logic. Studia Logica 64(2), 271–283 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Venema, Y.: Lectures on the modal μ-calculus. Renmin University in Beijing, China (2008)Google Scholar
  19. 19.
    Walukiewicz, I.: Completeness of Kozen’s axiomatization of the propositional mu-calculus. Information and Computation 157, 142–182 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zermelo, E.: Über eine anwendung der mengenlehre auf die theorie des schachspiels. In: Proceedings of the 5th Congress Mathematicians, pp. 501–504. Cambridge University Press, Cambridge (1913)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Davide Grossi
    • 1
  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations