Building a Front End for a Sensor Data Cloud

  • Ian Rolewicz
  • Michele Catasta
  • Hoyoung Jeung
  • Zoltán Miklós
  • Karl Aberer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

This document introduces the TimeCloud Front End, a web-based interface for the TimeCloud platform that manages large-scale time series in the cloud. While the Back End is built upon scalable, fault-tolerant distributed systems as Hadoop and HBase and takes novel approaches for facilitating data analysis over massive time series, the Front End was built as a simple and intuitive interface for viewing the data present in the cloud, both with simple tabular display and the help of various visualizations. In addition, the Front End implements model-based views and data fetch on-demand for reducing the amount of work performed at the Back End.

Keywords

time series front end interface model visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    The Django Project, http://www.djangoproject.com
  7. 7.
    Yahoo User Interface Library, http://developer.yahoo.com/yui/2/
  8. 8.
    Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network deploymentGoogle Scholar
  9. 9.
    Ahmad, Y., Papaemmanouil, O., Çetintemel, U., Rogers, J.: Simultaneous Equation Systems for Query Processing on Continuous-Time Data Streams. In: IEEE 24th International Conference on Data Engineering (ICDE 2008), pp. 666–675 (2008)Google Scholar
  10. 10.
    Deshpande, A., Madden, S.: MauveDB: supporting model-based user views in database systems. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data (SIGMOD 2006), pp. 73–84 (2006)Google Scholar
  11. 11.
    Kapler, T., Wright, W.: Geotime information visualization. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2004), pp. 136–146 (2004)Google Scholar
  12. 12.
    Moere, A.V.: Time-Varying Data Visualization using Information Flocking Boids. In: 2004 IEEE Symposium on Information Visualization (InfoVis 2004), pp. 97–104 (2004)Google Scholar
  13. 13.
    Thiagarajan, A., Madden, S.: Querying continuous functions in a database system. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), pp. 791–804 (2008)Google Scholar
  14. 14.
    Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony, S., Liu, H., Murthy, R.: Hive – a petabyte scale data warehouse using Hadoop. In: ICDE, pp. 996–1005 (2010)Google Scholar
  15. 15.
    van Wijk, J.J., van Selow, E.R.: Cluster and calendar based visualization of time series data. In: Proceedings of the 1999 IEEE Symposium on Information Visualization (InfoVis 1999), page 4 (1999)Google Scholar
  16. 16.
    White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Sebastopol (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ian Rolewicz
    • 1
  • Michele Catasta
    • 1
  • Hoyoung Jeung
    • 1
  • Zoltán Miklós
    • 1
  • Karl Aberer
    • 1
  1. 1.Ecole Polytechnique Federale de Lausanne (EPFL)Switzerland

Personalised recommendations