On Generalized Hypercomplex Laguerre-Type Exponentials and Applications

  • I. Cação
  • M. I. Falcão
  • H. R. Malonek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)


In hypercomplex context, we have recently constructed Appell sequences with respect to a generalized Laguerre derivative operator. This construction is based on the use of a basic set of monogenic polynomials which is particularly easy to handle and can play an important role in applications. Here we consider Laguerre-type exponentials of order m and introduce Laguerre-type circular and hyperbolic functions.


Hypercomplex Laguerre derivative Appell sequences exponential operators functions of hypercomplex variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bock, S., Gürlebeck, K.: On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33(4), 394–411 (2010)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Brackx, F.: On (k)-monogenic functions of a quaternion variable. In: Function Theoretic Methods in Differential Equations. Res. Notes in Math., vol. 8, pp. 22–44. Pitman, London (1976)Google Scholar
  3. 3.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Pitman, Boston (1982)zbMATHGoogle Scholar
  4. 4.
    Cação, I., Falcão, M.I., Malonek, H.R.: Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Modelling 53, 1084–1094 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cação, I., Malonek, H.: On complete sets of hypercomplex Appell polynomials. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 1048, pp. 647–650 (2008)Google Scholar
  6. 6.
    Dattoli, G.: Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle. In: Advanced Special Functions and Applications, Melfi (1999); Proc. Melfi Sch. Adv. Top. Math. Phys. 1, 147–164 (2000)Google Scholar
  7. 7.
    Dattoli, G.: Laguerre and generalized Hermite polynomials: the point of view of the operational method. Integral Transforms Spec. Funct. 15(2), 93–99 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dattoli, G., He, M.X., Ricci, P.E.: Eigenfunctions of Laguerre-type operators and generalized evolution problems. Math. Comput. Modelling 42(11-12), 1263–1268 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dattoli, G., Ricci, P.E.: Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions. Georgian Math. J. 10(3), 481–494 (2003)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Falcão, M.I., Cruz, J., Malonek, H.R.: Remarks on the generation of monogenic functions. In: 17th Inter. Conf. on the Appl. of Computer Science and Mathematics on Architecture and Civil Engineering, Weimar (2006)Google Scholar
  11. 11.
    Falcão, M.I., Malonek, H.R.: Generalized exponentials through Appell sets in ℝn + 1 and Bessel functions. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 936, pp. 738–741 (2007)Google Scholar
  12. 12.
    Fueter, R.: Die Funktionentheorie der Differentialgleichungen Δ u = 0 und ΔΔ u = 0 mit vier reellen Variablen. Comm. Math. Helv. (7), 307–330 (1934-1935)Google Scholar
  13. 13.
    Fueter, R.: Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 8(1), 371–378 (1935)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gürlebeck, K., Malonek, H.: A hypercomplex derivative of monogenic functions in ℝn + 1 and its applications. Complex Variables Theory Appl. 39, 199–228 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gürlebeck, N.: On Appell sets and the Fueter-Sce mapping. Adv. Appl. Clifford Algebr. 19(1), 51–61 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lávička, R.: Canonical bases for sl(2,c)-modules of spherical monogenics in dimension 3. Archivum Mathematicum, Tomus 46, 339–349 (2010)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Malonek, H.: A new hypercomplex structure of the euclidean space ℝm + 1 and the concept of hypercomplex differentiability. Complex Variables, Theory Appl. 14, 25–33 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Malonek, H.: Power series representation for monogenic functions in ℝn + 1 based on a permutational product. Complex Variables, Theory Appl. 15, 181–191 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Malonek, H.: Selected topics in hypercomplex function theory. In: Eriksson, S.L. (ed.) Clifford algebras and potential theory. University of Joensuu, pp. 111–150 (July 2004)Google Scholar
  20. 20.
    Malonek, H.R., Falcão, M.I.: Special monogenic polynomials—properties and applications. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 936, pp. 764–767 (2007)Google Scholar
  21. 21.
    Natalini, P., Ricci, P.E.: Laguerre-type Bell polynomials. Int. J. Math. Math. Sci., Art. ID 45423, 7 (2006)Google Scholar
  22. 22.
    Peña Peña, D., Sommen, F.: Monogenic Gaussian distribution in closed form and the Gaussian fundamental solution. Complex Var. Elliptic Equ. 54(5), 429–440 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • I. Cação
    • 1
  • M. I. Falcão
    • 2
  • H. R. Malonek
    • 1
  1. 1.Departamento de MatemáticaUniversidade de AveiroPortugal
  2. 2.Departamento de Matemática e AplicaçõesUniversidade do MinhoPortugal

Personalised recommendations