Optimizing the Layout of Proportional Symbol Maps

  • Guilherme Kunigami
  • Pedro J. de Rezende
  • Cid C. de Souza
  • Tallys Yunes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6784)

Abstract

Proportional symbol maps are a cartographic tool to assist in the visualization and analysis of quantitative data associated with specific locations (earthquake magnitudes, oil well production, temperature at weather stations, etc.). Symbol sizes are proportional to the magnitude of the quantities that they represent. We present a novel integer programming model to draw opaque disks on a map with the objective of maximizing the total visible border of all disks (an established measure of quality). We focus on drawings obtained by layering symbols on top of each other, known as stacking drawings. We introduce decomposition techniques, and several new families of facet-defining inequalities, which are implemented in a cut-and-branch algorithm. We assess the effectiveness of our approach through a series of computational experiments using real demographic and geophysical data. To the best of our knowledge, we are the first to provide provably optimal solutions to some of those problem instances.

Keywords

Computational Geometry Symbol Maps Integer Linear Programming Cartography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cabello, S., Haverkort, H., van Kreveld, M., Speckmann, B.: Algorithmic aspects of proportional symbol maps. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 720–731. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Cabello, S., Haverkort, H., van Kreveld, M., Speckmann, B.: Algorithmic aspects of proportional symbol maps. Algorithmica 58(3), 543–565 (2010)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  4. 4.
    Fair Isaac Corporation. Xpress Optimizer Reference Manual (2009)Google Scholar
  5. 5.
    Dent, B.: Cartography – Thematic Map Design, 5th edn. McGraw-Hill, New York (1999)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)MATHGoogle Scholar
  7. 7.
    Griffin, T.: The importance of visual contrast for graduated circles. Cartography 19(1), 21–30 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kunigami, G., de Rezende, P.J., de Souza, C.C., Yunes, T.: Optimizing the layout of proportional symbol maps (2010), http://www.optimization-online.org/DB_HTML/2010/11/2805.html
  9. 9.
    Nemhauser, G.L., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. Journal of the Operational Research Society 43(5), 443–457 (1992)CrossRefMATHGoogle Scholar
  10. 10.
    Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-Interscience, New York (1988)CrossRefMATHGoogle Scholar
  11. 11.
    NOAA Satellite and Information Service. National geophysical data center (2005), http://www.ngdc.noaa.gov
  12. 12.
    Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H.: Thematic Cartography and Geographic Visualization, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  13. 13.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming techniques applied to CGAL’s arrangement package. Computational Geometry 38(1-2), 37–63 (2007), http://www.cgal.org CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guilherme Kunigami
    • 1
  • Pedro J. de Rezende
    • 1
  • Cid C. de Souza
    • 1
  • Tallys Yunes
    • 2
  1. 1.Institute of ComputingState University of CampinasCampinasBrazil
  2. 2.Department of Management ScienceUniversity of MiamiCoral GablesUSA

Personalised recommendations