Advertisement

Spatial Clustering to Uncluttering Map Visualization in SOLAP

  • Ricardo Silva
  • João Moura-Pires
  • Maribel Yasmina Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

The main purpose of SOLAP concept was to take advantage of the map visualization improving the analysis of data and enhancing the associated decision making process. However, in this environment, the map can easily become cluttered losing the benefits that triggered the appearance of this concept. In order to overcome this problem we propose a post-processing stage, which relies on a spatial clustering approach, to reduce the number of values to be visualized when this number is inadequate to a properly map analysis. The results obtained so far show that the usage of the post–processing stage is very useful to maintain a map suitable to the user’s cognitive process. In addition, a novel heuristic to identify the threshold value from which the clusters must be generated was developed.

Keywords

SOLAP spatial clustering DBSCAN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the ACM SIGMOD Int’l Conference on Management of Data, Seattle, Washington, June 1998, pp. 94–105. ACM Press, New York (1998)Google Scholar
  2. 2.
    Andrienko, G.L., Andrienko, N.V., Jankowski, P., Keim, D.A., Kraak, M.J., MacEachren, A.M., Wrobel, S.: Geovisual analytics for spatial decision support: Setting the research agenda. International Journal of Geographical Information Science 21(8), 839–857 (2007)CrossRefGoogle Scholar
  3. 3.
    Atallah, M.J.: A linear time algorithm for the hausdorff distance between convex polygons. Inf. Process. Lett. 17(4), 207–209 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bédard, Y., Rivest, S., Proulx, M.J.: Spatial on-line analytical processing (solap): Concepts, architectures, and solutions from a geomatics engineering perspective. In: Data Warehouses and OLAP: Concepts, Architecture, pp. 298–319 (2006)Google Scholar
  5. 5.
    Bimonte, S.: On Modeling and Analysis of Multidimensional Geographic Databases. In: Data Warehousing Design and Advanced Engineering Applications: Methods for Complex Construction, chap. 6 (2010)Google Scholar
  6. 6.
    Bimonte, S., Wehrle, P., Tchounikine, A., Miquel, M.: GeWOlap: A web based spatial OLAP proposal. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1596–1605. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of Second SIAM International Conference on Data Mining (2003)Google Scholar
  8. 8.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of 2nd International Conference on Knowledge Discovery, pp. 226–231 (1996)Google Scholar
  9. 9.
    Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: Haas, L., Drew, P., Tiwary, A., Franklin, M. (eds.) SIGMOD 1998: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 73–84. ACM Press, New York (1998)CrossRefGoogle Scholar
  10. 10.
    Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28, 100–108 (1979)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jorge, R.: SOLAP+: Extending the Interaction Model. Master’s thesis, FCT / UNL, João Moura-Pires (superv.) (July 2009)Google Scholar
  12. 12.
    Joshi, D., Samal, A., Soh, L.K.: Density-based clustering of polygons. In: CIDM, pp. 171–178. IEEE, Los Alamitos (2009)Google Scholar
  13. 13.
    Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)CrossRefGoogle Scholar
  14. 14.
    Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Interscience, New York (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kolatch, E.: Clustering algorithms for spatial databases: A survey. Tech. rep. (2001)Google Scholar
  16. 16.
    Malinowski, E., Zimányi, E.: Spatial hierarchies and topological relationships in the spatial MultiDimER model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 17–28. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Malinowski, E., Zimányi, E.: Logical representation of a conceptual model for spatial data warehouses. Geoinformatica 11, 431–457 (2007)CrossRefGoogle Scholar
  18. 18.
    Miller, H.J., Han, J.: Geographic Data Mining and Knowledge Discovery, 2nd edn. (2009)Google Scholar
  19. 19.
    Moreira, A., Santos, M.Y.: Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points. In: GRAPP (GM/R), pp. 61–68. INSTICC - Institute for Systems and Technologies of Information, Control and Communication (2007)Google Scholar
  20. 20.
    Ng, R.T., Han, J.: Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering 14(5), 1003–1016 (2002)CrossRefGoogle Scholar
  21. 21.
    Rivest, S., Bédard, Y., Proulx, M., Nadeau, M., Hubert, F., Pastor, J.: SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS Journal of Photogrammetry and Remote Sensing 60(1), 17–33 (2005)CrossRefGoogle Scholar
  22. 22.
    Rivest, S., Bédard, Y., Proulx, M.J., Nadeau, M.: Solap: a new type of user interface to support spatio-temporal multidimensional data exploration and analysis. In: Proceedings of the ISPRS Joint Workshop on Spatial, Temporal and Multi-Dimensional Data Modelling and Analysis (2003)Google Scholar
  23. 23.
    Rivest, S., Bédard, Y., March, P.: Towards better support for spatial decision-making: defining the characteristics. Geomatica, the Journal of the Canadian Institute of Geomatics 55(4), 539–555 (2001)Google Scholar
  24. 24.
    Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)CrossRefGoogle Scholar
  25. 25.
    Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: a wavelet-based clustering approach for spatial datain very large databases. The VLDB Journal 8(3-4), 289–304 (2000)CrossRefGoogle Scholar
  26. 26.
    Silva, R.: SOLAP+. Master’s thesis, FCT / UNL, João Moura-Pires (superv.) (October 2010)Google Scholar
  27. 27.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD, pp. 103–114 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ricardo Silva
    • 1
  • João Moura-Pires
    • 1
  • Maribel Yasmina Santos
    • 2
  1. 1.Departamento de InformáticaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Departamento de Sistemas de InformaçãoUniversidade do MinhoGuimarãesPortugal

Personalised recommendations