To Diversify or Not to Diversify Entity Summaries on RDF Knowledge Graphs?

  • Marcin Sydow
  • Mariusz Pikuła
  • Ralf Schenkel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6804)


This paper concerns the issue of diversity in entity summarisation on RDF knowledge graphs. In particular, we study whether and to what extent the notion of diversity is appreciated by real users of a summarisation tool. To this end, we design a user evaluation study and experimentally evaluate and compare, on real data concerning the movie domain (IMDB), two graph-entity summarisation algorithms: PRECIS and DIVERSUM, that were proposed in our recent work. We present successful experimental results showing that diversity-awareness of a graph entity summarisation tool is a valuable feature and that DIVERSUM algorithm receives quite positive user feedback.


diversity entity summarisation RDF graphs experiments user evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM, pp. 5–14 (2009)Google Scholar
  2. 2.
    Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: SIGIR 1998: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. ACM, New York (1998)Google Scholar
  3. 3.
    Clarke, C.L.A., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttche, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR, pp. 659–666 (2008)Google Scholar
  4. 4.
    Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., Weikum, G.: Language-model-based ranking for queries on rdf-graphs. In: CIKM, pp. 977–986 (2009)Google Scholar
  5. 5.
    Ramanath, M., Kumar, K.S.: Xoom: a tool for zooming in and out of xml documents. In: EDBT, pp. 1112–1115 (2009)Google Scholar
  6. 6.
    Ramanath, M., Kumar, K.S., Ifrim, G.: Generating concise and readable summaries of xml documents. In: CoRR, abs/0910.2405 (2009)Google Scholar
  7. 7.
    Sydow, M., Pikuła, M., Schenkel, R.: DIVERSUM: Towards diversified summarisation of entities in knowledge graphs. In: Proceedings of Data Engineering Workshops (ICDEW) at IEEE 26th ICDE Conference pp. 221–226. IEEE, Los Alamitos (2010)Google Scholar
  8. 8.
    Sydow, M., Pikuła, M., Schenkel, R., Siemion, A.: Entity summarisation with limited edge budget on knowledge graphs. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 513–516. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar
  9. 9.
    Sydow, M.: Towards the Foundations of Diversity-Aware Node Summarisation on Knowledge Graphs. In: The Proceedings of the ”Diversity in Document Retrieval” Workshop at the ECIR 2011 Conference (to appear, 2011)Google Scholar
  10. 10.
    Vee, E., Srivastava, U., Shanmugasundaram, J., Bhat, P., Amer-Yahia, S.: Efficient computation of diverse query results. In: ICDE, pp. 228–236 (2008)Google Scholar
  11. 11.
    Wan, X.: Topic analysis for topic-focused multi-document summarization. In: CIKM, pp. 1609–1612 (2009)Google Scholar
  12. 12.
    Wan, X., Xiao, J.: Exploiting neighborhood knowledge for single document summarization and keyphrase extraction. ACM Trans. Inf. Syst. 28(2) (2010)Google Scholar
  13. 13.
    Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE, pp. 880–891 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marcin Sydow
    • 1
    • 2
  • Mariusz Pikuła
    • 2
  • Ralf Schenkel
    • 3
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  2. 2.Polish-Japanese Institute of Information TechnologyWarsawPoland
  3. 3.Saarland University and MPI for InformaticsSaarbrückenGermany

Personalised recommendations