The Impact of Triangular Inequality Violations on Medoid-Based Clustering

  • Saaid Baraty
  • Dan A. Simovici
  • Catalin Zara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6804)

Abstract

We evaluate the extent to which a dissimilarity space differs from a metric space by introducing the notion of metric point and metricity in a dissimilarity space. The effect of triangular inequality violations on medoid-based clustering of objects in a dissimilarity space is examined and the notion of rectifier is introduced to transform a dissimilarity space into a metric space.

Keywords

dissimilarity metric triangular inequality medoid clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th International Conference on Machine Learning, pp. 147–153 (2003)Google Scholar
  2. 2.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data – An Introduction to Cluster Analysis. Wiley Interscience, New York (1990)MATHGoogle Scholar
  3. 3.
    Kryszkiewicz, M., Lasek, P.: TI-DBSCAN: Clustering with DBSCAN by means of the triangle inequality. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 60–69. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Liao, Y., Kaafar, M., Gueye, B., Cantin, F., Geurts, P., Leduc, G.: Detecting triangle inequality violations in internet coordinate systems. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 352–363. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Lumezanu, C., Baden, R., Spring, N., Bhattacharjee, B.: Triangle inequality and routing policy violations in the internet. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 45–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Moore, A.W.: The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In: Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pp. 397–405. AAAI Press, Menlo Park (2000)Google Scholar
  7. 7.
    Pan, J.S., McInnes, F.R., Jack, M.A.: Fast clustering algorithms for vector quantization. Pattern Recognition 29, 511–518 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Saaid Baraty
    • 1
  • Dan A. Simovici
    • 1
  • Catalin Zara
    • 1
  1. 1.University of Massachusetts BostonBostonUSA

Personalised recommendations