Towards Programming Languages for Machine Learning and Data Mining (Extended Abstract)

  • Luc De Raedt
  • Siegfried Nijssen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6804)


Today there is only little support for developing software that incorporates a machine learning or a data mining component. To alleviate this situation, we propose to develop programming languages for machine learning and data mining. We also argue that such languages should be declarative and should be based on constraint programming modeling principles. In this way, one could declaratively specify the problem of machine learning or data mining problem of interest in a high-level modeling language and then translate it into a constraint satisfaction or optimization problem, which could then be solved using particular solvers. These ideas are illustrated on problems of constraint-based itemset and pattern set mining.


Data Mining Constraint Satisfaction Pattern Mining Constraint Satisfaction Problem Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andre, D., Russell, S.J.: Programmable reinforcement learning agents. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 1019–1025 (2000)Google Scholar
  2. 2.
    Biermann, A., Guiho, G., Kodratoff, Y. (eds.): Automatic Program Construction Techniques. Macmillan, Basingstoke (1984)zbMATHGoogle Scholar
  3. 3.
    Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Frisch, A.M., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence: A constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Gecode Team. Gecode: Generic constraint development environment (2006),
  9. 9.
    Getoor, L., Taskar, B. (eds.): An Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)zbMATHGoogle Scholar
  10. 10.
    Guns, T., Nijssen, S., De Raedt, L.: k-pattern set mining under constraints. Technical Report CW 596, Department of Computer Science, Katholieke Universiteit Leuven (2010)Google Scholar
  11. 11.
    Van Hentenreyck, P., Michel, L.: Constraint-based Local Search. The MIT Press, Cambridge (2005)Google Scholar
  12. 12.
    Hu, Z. (ed.): APLAS 2009. LNCS, vol. 5904. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Imielinski, T., Mannila, H.: A database perspectivce on knowledge discovery. Communications of the ACM 39(11), 58–64 (1996)CrossRefGoogle Scholar
  14. 14.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  15. 15.
    Mitchell,T.: The discipline of machine learning.Technical Report CMU-ML-06-108, Carnegie Mellon University (2006)Google Scholar
  16. 16.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19/20, 629–679 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 647–656 (2009)Google Scholar
  18. 18.
    De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, pp. 204–212 (2008)Google Scholar
  19. 19.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., Amsterdam (2006)zbMATHGoogle Scholar
  20. 20.
    Simpkins, C., Bhat, S., Isbell Jr., C.L., Mateas, M.: Towards adaptive programming: integrating reinforcement learning into a programming language. In: Harris, G.E. (ed.) Proceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, pp. 603–614 (2008)Google Scholar
  21. 21.
    Sonnenburg, S., Braun, M.L., Ong, C.S., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K.-R., Pereira, F., Rasmussen, C.A., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.: The need for open source software in machine learning. Journal of Machine Learning Research 8, 2443–2466 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luc De Raedt
    • 1
  • Siegfried Nijssen
    • 1
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenBelgium

Personalised recommendations