Advertisement

Molecular light scattering by pure seawater

  • Xiaodong ZhangEmail author
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

The general theory of the molecular scattering, and the scattering by water and seawater in particular, will be reviewed. For a pure liquid, free from any foreign particles, the statistical thermal motion of the molecules gives rise to the scattering of light. The resultant fluctuation of the density of the water and fluctuation in the orientations of the water molecules bring about fluctuation of the optical dielectric constant, which in turn causes scattering.

Keywords

Pure Water Partial Molar Volume Helmholtz Free Energy Destructive Interference Pure Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, R. W., and G. Halikas (1974), The index of refraction of seawater Rep. SIO Ref. No. 76–1, 121 pp, Scripps Institute of Oceanography, La Jolla.Google Scholar
  2. Beysens, D., and P. Calmettes (1977), Temperature dependence of the refractive indices of liquids: Deviation from the Lorentz-Lorenz formula, J. Chem. Phys., 66, 766–771.CrossRefGoogle Scholar
  3. Boss, E., and W. S. Pegau (2001), Relationship of light scattering at an angle in the backward direction to the backscattering coefficient, Appl. Opt., 40(30), 5503–5507.CrossRefGoogle Scholar
  4. Brinkman, H. C., and J. J. Hermans (2001), The effect of non-homogeneity of molecular weight on the scattering of lght by high polymer solutions, J. Chem. Phys., 17(6), 574–576.CrossRefGoogle Scholar
  5. Buiteveld, H., J. H. M. Hakvoort, and M. Donze (1994), The optical properties of pure water, SPIE, 2258 (Ocean Optics XII), 174–183.Google Scholar
  6. Cabannes, J. (1920), Relation entre le degré de polarisation et l’intensité de la lumière diffusee par des molecules anisotropes. Nouvelle determination de la constante d’Avogadro, J. Phys. Radium, 1(5), 129–142.Google Scholar
  7. Cabannes, J. (1922), Considerations theoriques sur la diffusion de la lumière par les liquides transparents. Polarisation de la lumière diffusee lateralement, J. Phys. Radium, 3(12), 429–442.Google Scholar
  8. Cho, C. H., J. Urquidi, G. I. Gellene, and G. W. Robinson (2001), Mixture model description of the T-, P dependence of the refractive index of water, J. Chem. Phys., 114(7), 3157–3162.CrossRefGoogle Scholar
  9. Cohen, G., and H. Eisenberg (1965), Light scattering of water, deuterium oxide, and other pure liquids, J. Chem. Phys., 43(11), 3881–3887.CrossRefGoogle Scholar
  10. Debye, P. (1944), Light scattering in solutions, J. Appl. Phys., 15(4), 338–342. Einstein, A. (1910), Theorie der Opaleszenz von homogenen Flüssigkeiten und Flussig-keitsgemischen in der Nähe des kritischen Zustandes, Annalen der Physik, 338(16), 1275–1298.CrossRefGoogle Scholar
  11. Eisenberg, H. (1965), Equation for the refractive index of water, J. Chem. Phys., 43(11), 3887–3892.CrossRefGoogle Scholar
  12. Fabelinskii, I. L. (1968), Molecular Scattering of Light, Plenum Press, New York.Google Scholar
  13. Farinato, R. S., and R. L. Rowell (1976), New values of the light scattering depolarization and anisotropy of water, J. Chem. Phys., 65(2), 593–595.CrossRefGoogle Scholar
  14. Gordon, H. R., and A. Morel (1983), Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Springer-Verlag, New York.Google Scholar
  15. Jonasz, M., and G. R. Fournier (2007), Light Scattering by Particles in Water: Theoretical and, Experimental Foundations, Academic Press, New York.Google Scholar
  16. Kerker, M. (1969), The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York.Google Scholar
  17. King, L. V. (1923), The complex anisotropic molecule in relation to the theory of dispersion and scattering of light in gases and liquids, Nature, 111(2794), 667.CrossRefGoogle Scholar
  18. Kirkwood, J. G., and R. J. Goldberg (1950), Light scattering arising from composition fluctuations in multi-component systems, J. Chem. Phys., 18(1), 54–57.CrossRefGoogle Scholar
  19. Kratohvil, J. P., M. Kerker, and L. E. Oppenheimer (1965), Light scattering by pure water, J. Chem. Phys., 43(3), 914–921.CrossRefGoogle Scholar
  20. Kraut, J., and W. B. Dandliker (1955), Light scattering by water, J. Chem. Phys., 23, 1544–1545.CrossRefGoogle Scholar
  21. Martin, W. H. (1923), The scattering of light by liquids: Effect of direction on polarization and intensity, Proceedings and Transactions of The Royal Society of Canada, XVII, 151–155.Google Scholar
  22. Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall (2008), The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep-Sea Res. I, 55(1), 50–72.Google Scholar
  23. Morel, A. (1966), Etude Experimentale de la diffusion de la lumière par l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures, Journal de Chimie Physique, 10, 1359–1366.Google Scholar
  24. Morel, A. (1968), Note au sujet des constantes de diffusion de la lumière pour l’eau et l’eau de mer optiquement pures, Cahiers Oceanographiques, 20, 157–162.Google Scholar
  25. Morel, A. (1974), Optical properties of pure water and pure sea water, in Optical Aspects of Oceanography, edited by N. G. Jerlov and E. S. Nielsen, pp. 1–24, Academic Press, New York.Google Scholar
  26. Mysels, K. J., and L. H. Princen (1959), Light scattering by some laurylsulfate solutions, J. Phys. Chem., 63(10), 1696–1700.CrossRefGoogle Scholar
  27. Niedrich, Z. (1985), Dispersion interactions and the refractive index of liquids, Physica, 128B, 69–75.Google Scholar
  28. Parfitt, G. D., and J. A. Wood (1968), Rayleigh ratios of pure liquids; comparison of experiment with theory, Transactions of the Faraday Society, 64, 805–814.CrossRefGoogle Scholar
  29. Pethica, B. A., and C. Smart (1966), Light scattering of electrolyte solutions, Trans. Faraday Soc., 62, 1890–1899.CrossRefGoogle Scholar
  30. Prins, J. A., and W. Prins (1956), Depolarisation et intensité de la lumière diffusee par les liquides a molecules anisotropes, Physica, 22(6–12), 576–578.CrossRefGoogle Scholar
  31. Proutiere, A., E. Megnassan, and H. Hucteau (1992), Refractive index and density variations in pure liquids: A new theoretical relation, J. Phys. Chem., 96, 3485–3489.CrossRefGoogle Scholar
  32. Raman, C. V., and K. S. Rao (1923), LXIII. On the molecular scattering and extinction of light in liquids and the determination of the Avogadro constant, Philosophical Magazine Series 6, 45(267), 625–640.CrossRefGoogle Scholar
  33. Shifrin, K. S. (1988), Physical Optics of Ocean Water, American Institute of Physics, New York.Google Scholar
  34. Smoluchowski, M. v. (1908), Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen, Annalen der Physik, 330(2), 205–226.CrossRefGoogle Scholar
  35. Stockmayer, W. H. (1950), Light scattering in multi-component systems, J. Chem. Phys., 18(1), 58–61.CrossRefGoogle Scholar
  36. Strutt, R. J. L. R. (1918), The light scattered by gases: its polarisation and intensity, Proceedings of the Royal Society of London. Series A, 95(667), 155–176.Google Scholar
  37. Tilton, L. W., and J. K. Taylor (1938), Refractive index and dispersion of distilled water for visible radiation at temperature 0 to 60°C, J. Res. Natl. Bur. Stand., 20, 419.CrossRefGoogle Scholar
  38. Twardowski, M. S., H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot (2007), Optical backscattering properties of the ’clearest’ natural waters, Biogeosciences, 4(6), 1041–1058.CrossRefGoogle Scholar
  39. Vedamuthu, M., S. Singh, and G. W. Robinson (1994), Properties of liquid water: Origin of the density anomalies, J. Phys. Chem., 98(9), 2222–2230.CrossRefGoogle Scholar
  40. Vedamuthu, M., S. Singh, and G. W. Robinson (1995), Properties of liquid water. 4. The isothermal compressibility minimum near 50°C, J. Phys. Chem., 99(22), 9263–9267.Google Scholar
  41. Zhang, X., and L. Hu (2009), Estimating scattering of pure water from density fluctuation of the refractive index, Opt. Express, 17(3), 1671–1678.CrossRefGoogle Scholar
  42. Zhang, X., and L. Hu (2010), Effects of temperature and salinity on light scattering by water, paper presented at SPIE - Ocean Sensing and Monitoring, Orlando, FL, USA.Google Scholar
  43. Zhang, X., L. Hu, and M.-X. He (2009), Scattering by pure seawater: Effect of salinity, Opt. Express, 17(7), 5698–5710.CrossRefGoogle Scholar
  44. Zimm, B. H. (1945), Molecular theory of the scattering of light in fluids, J. Chem. Phys., 13(4), 141–145.CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Earth System Science and PolicyUniversity of North DakotaGrand ForksUSA

Personalised recommendations