Energy and Path Aware Clustering Algorithm (EPAC) for Mobile Ad Hoc Networks

  • Waqar Asif
  • Saad Qaisar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6785)

Abstract

Node clustering is a technique that mitigates the change in topology in Ad hoc communication. It stabilizes the end to end communication path and maximizes the path life time. In SWARM communication, each cluster is assigned an objective and expected to complete it in the available resources. Most of the algorithms previously designed assume that the assignment of tasks can be done in any arbitrary manner and does not depend on the energy resources. In this work, we have emphasized that the number of nodes in a cluster is fundamentally related to the energy requirement of the objective. With the help of this new algorithm, we minimize energy consumption in a cluster by improving the mechanism for selecting objective, depending upon the amount of energy present at the nodes of that cluster.

Keywords

SWARM Pareto Optimality Cluster Head Optimality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, B., Papavassiliou, S.: A mobility-based clustering approach to support mobility management and multicast routing in mobile ad-hoc wireless networks. International Journal of Network Management 11(6), 387–395 (2001)CrossRefGoogle Scholar
  2. 2.
    Chiang, C.C., Wu, H.K., Liu, W., Gerla, M.: Routing in clustered multihop, mobile wireless networks with fading channel. In: Proc./E SlCON, vol. 97, pp. 121–197 (1997)Google Scholar
  3. 3.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)CrossRefGoogle Scholar
  4. 4.
    Gu, B., Hong, X.: Mobility identification and clustering in sparse mobile networks. In: IEEE Military Communications Conference (MILCOM 2009), pp. 1–7. IEEE, New York (2010)Google Scholar
  5. 5.
    Gunter, Y., Wiegel, B., Grossmann, H.P.: Cluster-based medium access scheme for vanets. In: IEEE Intelligent Transportation Systems Conference (ITSC 2007), pp. 343–348. IEEE, New York (2007)Google Scholar
  6. 6.
    Kawadia, V., Kumar, P.R.: Power control and clustering in ad hoc networks. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications (INFOCOM 2003), IEEE Societies, vol. 1, pp. 459–469. IEEE, New York (2003)Google Scholar
  7. 7.
    Kayis, O., Acarman, T.: Clustering formation for inter-vehicle communication. In: IEEE Intelligent Transportation Systems Conference (ITSC 2007), pp. 636–641. IEEE, New York (2007)Google Scholar
  8. 8.
    Li, Z., Liu, S., Xiao, D., Chen, J., Li, K.: Multi-objective particle swarm optimization algorithm based on game strategies. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 287–294. ACM Press, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Mishra, S.K., Panda, G., Meher, S.: Multi-objective particle swarm optimization approach to portfolio optimization. In: World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 1612–1615. IEEE, New York (2010)Google Scholar
  10. 10.
    Nasim, M., Qaisar, S.: Hierarchical MIMO: A clustering approach for Ad hoc wireless sensor networks. In: 44th Annual Conference on Information Sciences and Systems (CISS 2010), pp. 1–6. IEEE, New York (2010)Google Scholar
  11. 11.
    Rappaport, T.S.: Wireless communications. Prentice Hall PTR, New Jersey (2002)Google Scholar
  12. 12.
    Shea, C., Hassanabadi, B., Valaee, S.: Mobility-based clustering in VANETs using affinity propagation. In: IEEE Global Telecommunications Conference (GLOBECOM 2009), pp. 1–6. IEEE, New York (2010)Google Scholar
  13. 13.
    Stirling, T., Floreano, D.: Energy Efficient Swarm Deployment for Search in Unknown Environments. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 562–563. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Stirling, T., Floreano, D.: Energy-Time Efficiency in Aerial Swarm Deployment. In: Proceedings of the 10th International Symposium on Distributed Autonomous Robotics Systems (2010)Google Scholar
  15. 15.
    Wang, Y., Medidi, M.: A Distributed Size-bounded Multi-hop Clustering for Mobile Ad Hoc Networks (2006)Google Scholar
  16. 16.
    Wu, Y., Wang, W.: MEACA: Mobility and Energy Aware Clustering Algorithm for Constructing Stable MANETs. In: IEEE Military Communications Conference (MILCOM 2006), pp. 1–7. IEEE, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Waqar Asif
    • 1
  • Saad Qaisar
    • 1
  1. 1.National University of Sciences and Technology, H-12Pakistan

Personalised recommendations