Synchronous and Asynchronous Distributed Computing for Financial Option Pricing

  • Thierry Garcia
  • Ming Chau
  • Pierre Spiteri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6783)


This paper deals with the numerical solution of financial applications, more specifically the computation of American and European options derivatives modeled by boundary value problems. In such applications we have to solve large-scale algebraic linear systems. We concentrate on synchronous and asynchronous parallel iterative algorithms carried out on Grid’5000, by using an experimental peer-to-peer platform. The properties of the operators arising in the discretized problem ensure the convergence of the parallel iterative synchronous and asynchronous algorithms. Different detection convergence algorithms are tested for asynchronous iterations. Computational experiments performed on distributed architectures are presented and analyzed.


Parallel asynchronous algorithms distributed computing iterative numerical methods European options derivatives American options derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilmott, P., Dewyne, J., Howison, S.: Option pricing - mathematical models and computation. Oxford financial press (1993)Google Scholar
  2. 2.
    Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American options. Acta Applicandae Mathematicae 21, 263–289 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    El Baz, D., Jourjon, G.: Some solutions for Peer to Peer Global Computing. In: Proceedings of 13th Euromicro Conference on Parallel, Distributed and Network-Base Processing, pp. 49–58 (2005)Google Scholar
  4. 4.
    Spitéri, P., Chau, M.: Parallel asynchronous Richardson method for the solution of obstacle problem. In: Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications, pp. 133–138 (2002)Google Scholar
  5. 5.
    Nguyen, T.T., El Baz, D., Spiteri, P., Jourjon, G., Chau, M.: High Performance Peer-to-Peer Distributed Computing with Application to Obstacle Problem. In: Proceedings of IEEE IPDPS 2010 Conference, Atlanta (2010)Google Scholar
  6. 6.
    Giraud, L., Spiteri, P.: Parallel resolution of non-linear boundary value problems. Mathematical Modeling and Numerical Analysis 25(5), 579–606 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Miellou, J.C., Spiteri, P.: A criterion of convergence for general fixed point methods. Mathematical Modeling and Numerical Analysis 19, 645–669 (1985)CrossRefzbMATHGoogle Scholar
  8. 8.
    Miellou, J.C., El Baz, D., Spiteri, P.: A new class of asynchronous iterative algorithms with order interval. Mathematics of Computation 67(221), 237–255 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    El Baz, D., Nguyen, T.T.: A self-adaptive communication protocol with application to high performance peer to peer distributed computing. In: Proceedings of the 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Pisa, pp. 327–333 (2010)Google Scholar
  10. 10.
    Aumage, G.M.: MPICH/Madeleine: a True Multi-Protocol MPI for High Performance Networks. In: 15th International Parallel and Distributed Processing Symposium, IPDPS 2001 (2001)Google Scholar
  11. 11.
    Anderson, D.P.: BOINC: A System for Public-Resource Computing and Storage. In: 5th IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA (2004)Google Scholar
  12. 12.
    Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: An approach to easily assemble grids with equitable resource sharing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Ortega, J.M., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. Academic press, London (1970)zbMATHGoogle Scholar
  14. 14.
    Hiltunen, M.A.: The Cactus Approach to Building Configurable Middleware Services. In: DSMGC 2000, Nuremberg, Germany (2000)Google Scholar
  15. 15.
    Wong, G.T., Hiltunen, M.A., Schlichting, R.D.: A configurable and extensible transport protocol. In: Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska, pp. 319–328 (2001)Google Scholar
  16. 16.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods. Prentice Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  17. 17.
    Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Parallel iterative algorithms: from sequential to grid computing. Chapman & Hall/CRC, Boca Raton (2007)zbMATHGoogle Scholar
  18. 18.
    Spiteri, P.: Parallel optimization and financial mathematics. In: Proceedings of COSI 2009 and Microsoft Summer School, Annaba, pp. 257–270 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thierry Garcia
    • 1
  • Ming Chau
    • 2
  • Pierre Spiteri
    • 1
  1. 1.INP - ENSEEIHT - IRIT BP 7122Toulouse CedexFrance
  2. 2.Advanced Solutions AcceleratorCastelnau le LezFrance

Personalised recommendations