Advertisement

Proteins Separation in Distributed Environment Computation

  • Ming Chau
  • Thierry Garcia
  • Pierre Spiteri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6783)

Abstract

In the present study we consider the parallel simulation on a peer-topeer demonstrator for the computation of a 3D differential equations, which model the behavior of the continuous-flow electrophoresis problem. The physical model considered is constituted by the Navier-Stokes equation coupled with a convection-diffusion equation and a Laplacian equation. By using appropriate discretization of the coupled boundary value problems, we can prove the convergence of synchronous and more generally asynchronous relaxation methods. Finally parallel experiments on the peer-to-peer demonstrator are presented and analyzed.

Keywords

Parallel computing distributed computing continuous-flow electrophoresis asynchronous iteration PISO algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clifton, M.J., Roux-de-Balman, H., Sanchez, V.: Electro hydrodynamic deformation of the sample stream in continuous-flow electrophoresis with an AC electric field. The Canadian Journal of Chemical Engineering 70, 1055–1062 (1992)CrossRefGoogle Scholar
  2. 2.
    Clifton, M.J.: Numerical simulation of protein separation by continuous-flow electrophoresis. Electrophoresis 14, 1284–1291 (1993)CrossRefGoogle Scholar
  3. 3.
    Giraud, L., Spiteri, P.: Parallel resolution of non-linear boundary value problems. Mathematical Modelling and Numerical Analysis 25(5), 579–606 (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Miellou, J.C., Spiteri, P.: “A criterion of convergence for general fixed point methods’. Mathematical Modelling and Numerical Analysis 19, 645–669 (1985)CrossRefzbMATHGoogle Scholar
  5. 5.
    Miellou, J.C., El Baz, D., Spiteri, P.: A new class of asynchronous iterative algorithms with order interval. Mathematics of Computation 67(221), 237–255 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    El Baz, D., Jourjon, G.: Some solutions for Peer to Peer Global Computing. In: Proceedings of 13th Euromicro Conference on Parallel, Distributed and Network-Base Processing, pp. 49–58 (2005)Google Scholar
  7. 7.
    Nguyen, T.T., El Baz, D., Spiteri, P., Jourjon, G., Chau, M.: High Performance Peer-to-Peer Distributed Computing with Application to Obstacle Problem. In: Proceedings of IEEE IPDPS 2010 Conference, Atlanta (2010)Google Scholar
  8. 8.
    El Baz, D., Nguyen, T.T.: A self-adaptive communication protocol with application to high performance peer to peer distributed computing. In: Proceedings of the 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Pisa, pp. 327–333 (2010)Google Scholar
  9. 9.
    Aumage, G.M.: MPICH/Madeleine: a True Multi-Protocol MPI for High Performance Networks. In: 15th International Parallel and Distributed Processing Symposium, IPDPS 2001 (2001)Google Scholar
  10. 10.
    Anderson, D.P.: BOINC: A System for Public-Resource Computing and Storage. In: 5th IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA (2004)Google Scholar
  11. 11.
    Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: An approach to easily assemble grids with equitable resource sharing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Patankar, S.V.: Numerical heat transfer and fluid flow. Mc. Graw Hill, New York (1980)zbMATHGoogle Scholar
  13. 13.
    Issa, R.I.: Solution of the implicitly discretized fluid flow equation by operator splitting. Journal of Computational Physic 62, 40–65 (1986)CrossRefzbMATHGoogle Scholar
  14. 14.
    Chau, M., Spiteri, P., Boisson, H.C.: Parallel numerical simulation for the coupled problem of continuous-flow electrophoresis. International Journal for Numerical Methods in Fluids 55, 945–963 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chau, M., Spiteri, P., Guivarch, R., Boisson, H.C.: Parallel asynchronous iterations for thesolution of a 3D continuous-flow electrophoresis problem. Computers and Fluids 37(9), 1126–1137 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ortega, J.M., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. Academic press, London (1970)zbMATHGoogle Scholar
  17. 17.
    Garcia, T., Chau, M., Nguyen, T., El Baz, D., Spiteri, P.: Asynchronous peer-to-peer distributed computing for financial applications. In: 12th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (IEEE IPDPS/PDSEC 2011), Anchorage, Alaska, USA, May 16-20 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ming Chau
    • 1
  • Thierry Garcia
    • 2
  • Pierre Spiteri
    • 2
  1. 1.Advanced Solutions AcceleratorCastelnau le LezFrance
  2. 2.INP - ENSEEIHT - IRIT BP 7122Toulouse CedexFrance

Personalised recommendations