A Speed-Up Technique for Distributed Shortest Paths Computation

  • Gianlorenzo D’Angelo
  • Mattia D’Emidio
  • Daniele Frigioni
  • Vinicio Maurizio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6783)


We propose a simple and practical speed-up technique, which can be combined with every distance vector routing algorithm based on shortest paths, allowing to reduce the total number of messages sent by that algorithm. We combine the new technique with two algorithms known in the literature: DUAL, which is part of CISCO’s widely used EIGRP protocol, and the recent DUST, which has been shown to be very effective on networks with power law node degree distribution. We give experimental evidence that these combinations lead to an important gain in terms of the number of messages sent by DUAL and DUST at the price of a little increase in terms of space occupancy per node.


Short Path Central Node Peripheral Node Dynamic Graph Space Overhead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Partially dynamic efficient algorithms for distributed shortest paths. Theoretical Computer Science 411, 1013–1037 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Garcia-Lunes-Aceves, J.J.: Loop-free routing using diffusing computations. IEEE/ACM Trans. on Networking 1, 130–141 (1993)CrossRefGoogle Scholar
  3. 3.
    Italiano, G.F.: Distributed algorithms for updating shortest paths. In: Toueg, S., Kirousis, L.M., Spirakis, P.G. (eds.) WDAG 1991. LNCS, vol. 579, pp. 200–211. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  4. 4.
    McQuillan, J.: Adaptive routing algorithms for distributed computer networks. Technical Report BBN Report 2831, Cambridge, MA (1974)Google Scholar
  5. 5.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall International, Englewood Cliffs (1992)zbMATHGoogle Scholar
  6. 6.
    Moy, J.T.: OSPF: Anatomy of an Internet routing protocol. Addison-Wesley, Reading (1998)Google Scholar
  7. 7.
    Elmeleegy, K., Cox, A.L., Ng, T.S.E.: On count-to-infinity induced forwarding loops in ethernet networks. In: Proceedings IEEE INFOCOM, pp. 1–13 (2006)Google Scholar
  8. 8.
    Myers, A., Ng, E., Zhang, H.: Rethinking the service model: Scaling ethernet to a million nodes. In: ACM SIGCOMM HotNets. ACM Press, New York (2004)Google Scholar
  9. 9.
    Ray, S., Guérin, R., Kwong, K.W., Sofia, R.: Always acyclic distributed path computation. IEEE/ACM Trans. on Networking 18(1), 307–319 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhao, C., Liu, Y., Liu, K.: A more efficient diffusing update algorithm for loop-free routing. In: 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom 2009), pp. 1–4. IEEE Press, Los Alamitos (2009)Google Scholar
  11. 11.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: A new fully dynamic algorithm for distributed shortest paths and its experimental evaluation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 59–70. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: Engineering a new algorithm for distributed shortest paths on dynamic networks (submitted for publication),, Prel. version in [11]
  13. 13.
    D’Angelo, G., Frigioni, D., Maurizio, V.: An experimental study of distributed algorithms for shortest paths on real networks. In: 12th Italian Conference on Theoretical Computer Science, ICTCS (2010)Google Scholar
  14. 14.
    Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy, K.: The CAIDA IPv4 routed/24 topology dataset,
  15. 15.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex network. Reviews of Modern Physics 74, 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    OMNeT++: The discrete event simulation environment,
  17. 17.
    Albert, R., Barabási, A.L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gianlorenzo D’Angelo
    • 1
  • Mattia D’Emidio
    • 1
  • Daniele Frigioni
    • 1
  • Vinicio Maurizio
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità dell’AquilaL’AquilaItaly

Personalised recommendations