Approximate Bicluster and Tricluster Boxes in the Analysis of Binary Data

  • Boris G. Mirkin
  • Andrey V. Kramarenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6743)


A disjunctive model of box bicluster and tricluster analysis is considered. A least-squares locally-optimal one cluster method is proposed, oriented towards the analysis of binary data. The method involves a parameter, the scale shift, and is proven to lead to ”contrast” box bi- and tri-clusters. An experimental study of the method is reported.


box bicluster tricluster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)CrossRefGoogle Scholar
  3. 3.
    Hartigan, J.A.: Clustering Algorithms. Wiley, Chichester (1975)zbMATHGoogle Scholar
  4. 4.
    Ignatov, D., Kuznetsov, S.: Biclustering methods using lattices of closed subsets. In: Proceedings of 12th National Conference on Artificial Intelligence, Moscow, FML, vol. 1, pp. 175–182 (2010) (in Russian)Google Scholar
  5. 5.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 1(1), 24–45 (2004)CrossRefGoogle Scholar
  6. 6.
    Mirkin, B., Arabie, P., Hubert, L.: Additive two-mode clustering: the error-variance approach revisited. Journal of Classification 12, 243–263 (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mirkin, B.: Mathematical Classification and Clustering, p. 448. Kluwer, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Mirkin, B.: Two goals for biclustering: ”Box” and ”Dual” methods (2008) (unpublished manuscript) Google Scholar
  9. 9.
    Pensa, R.G., Boulicaut, J.-F.: Towards fault-tolerant formal concept analysis. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 212–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A Systematic Comparison and Evaluation of Biclustering Methods for Gene Expression Data. Bioinformatics 22(9), 1122–1129 (2006)CrossRefGoogle Scholar
  11. 11.
    Rome, J.E., Haralick, R.M.: Towards a formal concept analysis approach to exploring communities on the World Wide Web. In: International Conference on Formal Concept Analysis, Lens, France (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Boris G. Mirkin
    • 1
    • 2
  • Andrey V. Kramarenko
    • 1
  1. 1.National Research University–Higher School of EconomicsMoscowRussia
  2. 2.Department of Computer Science and Information SystemsBirkbeck University of LondonUK

Personalised recommendations