Advertisement

Hybrid Parallel Simulations of Fluid Flows in Complex Geometries: Application to the Human Lungs

  • Mathias J. Krause
  • Thomas Gengenbach
  • Vincent Heuveline
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6586)

Abstract

In this paper a hybrid parallel strategy dedicated to the simulations of fluid flows in complex geometries by means of Lattice Boltzmann methods (LBM) is introduced. The approach allows coping with platforms sharing both the properties of shared and distributed architectures and relies on spatial domain decomposition where each sub-domain represents a basic block entity which is solved on a symmetric multi-processing (SMP) system. Main emphasis is placed on testing its realization and studying its efficiency on a realistic fluid flow problem with a highly complex geometry. Therefore, as a suitable problem the simulation of the expiration in the human lung, whose functionality is described by a dedicated two-scale model, is considered.

Keywords

Numerical Simulation Lattice Boltzmann High Performance Computing Computational Fluid Dynamics Human Lungs Modeling Respiratory System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hänel, D.: Molekulare Gasdynamik. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Krause, M.J.: Fluid Flow Simulation and Optimisation with Lattice Boltzmann Methods on High Performance Computers: Application to the Human Respiratory System. Ph.D. thesis, Karlsruhe Institute for Technology (KIT), Universität Karlsruhe (TH), Kaiserstrae 12, 76131 Karlsruhe, Germany (2010), http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768
  4. 4.
    Saint-Raymond, L.: From the BGK model to the Navier-Stokes equations. Annales Scientifiques de l’École Normale Supérieure 36, 271–317 (2003), http://www.sciencedirect.com/science/article/B6VKH-48HS9DK-5/2/4b7102c9ed9f501112dc9b08b7c9ae3d CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Junk, M., Klar, A.: Discretizations for the Incompressible Navier-Stokes Equations Based on the Lattice Boltzmann Method. SIAM J. Sci. Comput. 22, 1–19 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Heuveline, V., Krause, M.J., Latt, J.: Towards a hybrid parallelization of lattice Boltzmann methods. Computers & Mathematics with Applications 58, 1071 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Heuveline, V., Krause, M.J.: OpenLB: Towards an Efficient Parallel Open Source Library for Lattice Boltzmann Fluid Flow Simulations. In: International Workshop on State-of-the-Art in Scientific and Parallel Computing. PARA, vol. 9 (2010) (accepted)Google Scholar
  8. 8.
    Gengenbach, T., Heuveline, V., Krause, M.: Numerical Simulation of the Human Lung: A Two-scale Approach. In: BMT 2010 - Reguläre Beiträge (BMT 2010 Reguläre Beiträge), Rostock-Warnemünde, Germany (2010)Google Scholar
  9. 9.
    Massaioli, F., Amati, G. Achieving high performance in a LBM code using OpenMP. In EWOMP 2002, The Fourth European Workshop on OpenMP (2002)Google Scholar
  10. 10.
    Pohl, T., et al.: Performance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on Three Supercomputing Architectures, p. 21 (2004)Google Scholar
  11. 11.
    Zeiser, T., Götz, J., Stürmer, M.: On performance and accuracy of lattice Boltzmann approaches for single phase flow in porous media: A toy became an accepted tool - how to maintain its features despite more and mor complex (physical) models and changing trends in high performance computing! In: Resch, M., Shokin, Y., Shokina, N., et al. (eds.) Proceedings of 3rd Russian-German Workshop on High Performance Computing, Novosibirsk, July 2007. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Valentin, J.: Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values - ICRP Publication 89. Annals of the ICRP 32, 1–277 (2002), http://www.ingentaconnect.com/content/els/01466453/2002/00000032/00000003/art00002 CrossRefGoogle Scholar
  13. 13.
    Gengenbach, T.: Modellierung und numerische Simulation der menschlichen Atemwege auf Hochleistungsrechnern. Master’s thesis, Universitaet Karlsruhe (TH) (2009)Google Scholar
  14. 14.
    Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the single processor performance of simple lattice Boltzmann kernels. Computers & Fluids 35, 910 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mathias J. Krause
    • 1
  • Thomas Gengenbach
    • 1
  • Vincent Heuveline
    • 1
  1. 1.Engineering Mathematics and Computing Lab (EMCL) Institute for Applied and Numerical Mathematics 4Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations