StochKit-FF: Efficient Systems Biology on Multicore Architectures

  • Marco Aldinucci
  • Andrea Bracciali
  • Pietro Liò
  • Anil Sorathiya
  • Massimo Torquati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6586)


The stochastic modelling of biological systems is informative and often very adequate, but it may easily be more expensive than other modelling approaches, such as differential equations. We present StochKit-FF, a parallel version of StochKit, a reference toolkit for stochastic simulations. StochKit-FF is based on the FastFlow programming toolkit for multicores and on the novel concept of selective memory. We experiment StochKit-FF on a model of HIV infection dynamics, with the aim of extracting information from efficiently run experiments, here in terms of average and variance and, on a longer term, of more structured data.


Stochastic biological models simulation multicore 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petzold, L.: StochKit web page,
  2. 2.
    Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)CrossRefGoogle Scholar
  3. 3.
    Sguanci, L., Bagnoli, F., Liò, P.: Modeling HIV quasispecies evolutionary dynamics. BMC Evolutionary Biology 7(2), S5 (2007)CrossRefGoogle Scholar
  4. 4.
    Gillespie, D.: Exact stochastic simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  5. 5.
    Chao, L., Davenport, M., Forrest, S., Perelson, A.: A stochastic model of cytotoxic t cell responses. Journal Theoretical Biology 228, 227–240 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Wilkinson, D.: A stochastic model of cytotoxic T cell responses. CRC press, Boca Raton (2006)Google Scholar
  7. 7.
    Sorathiya, A., Liò, P., Bracciali, A.: Formal reasoning on qualitative models of coinfection of HIV and Tuberculosis and HAART therapy. BMC Bioinformatics 11(1) (2010); Asia Pacific Bioinformatics Conference Google Scholar
  8. 8.
    Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computations. Research Monographs in Parallel and Distributed Computing. Pitman (1989)Google Scholar
  9. 9.
    Intel Threading Building Blocks,
  10. 10.
    Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing landscape. CACM 52(10), 56–67 (2009)CrossRefGoogle Scholar
  11. 11.
    Fastflow project (2009),
  12. 12.
    Aldinucci, M., Meneghin, M., Torquati, M.: Efficient smith-waterman on multi-core with FastFlow. In: Proc. of Intl. Euromicro PDP 2010: Parallel Distributed and Network-Based Processing, Pisa, Italy, pp. 195–199. IEEE, Los Alamitos (February 2010)Google Scholar
  13. 13.
    Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel programming by transformation: The FAN skeleton framework. Parallel Algorithms and Applications 16(2-3), 87–121 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marco Aldinucci
    • 1
  • Andrea Bracciali
    • 2
  • Pietro Liò
    • 3
  • Anil Sorathiya
    • 3
  • Massimo Torquati
    • 4
  1. 1.Computer Science DepartmentUniversity of TorinoItaly
  2. 2.ISTI - CNRItaly
  3. 3.Computer LaboratoryCambridge UniversityUK
  4. 4.Computer Science DepartmentUniversity of PisaItaly

Personalised recommendations