Advertisement

Fine-Grained Parallelization of a Vlasov-Poisson Application on GPU

  • Guillaume Latu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6586)

Abstract

Understanding turbulent transport in magnetised plasmas is a subject of major importance to optimise experiments in tokamak fusion reactors. Also, simulations of fusion plasma consume a great amount of CPU time on today’s supercomputers. The Vlasov equation provides a useful framework to model such plasma. In this paper, we focus on the parallelization of a 2D semi-Lagrangian Vlasov solver on GPGPU. The originality of the approach lies in the needed overhaul of both numerical scheme and algorithms, in order to compute accurately and efficiently in the CUDA framework. First, we show how to deal with 32-bit floating point precision, and we look at accuracy issues. Second, we exhibit a very fine grain parallelization that fits well on a many-core architecture. A speed-up of almost 80 has been obtained by using a GPU instead of one CPU core. As far as we know, this work presents the first semi-Lagrangian Vlasov solver ported onto GPU.

Keywords

Central Processing Unit Global Memory Double Precision Vlasov Equation Single Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BAB+08]
    Bowers, K.J., Albright, B.J., Bergen, B., Yin, L., Barker, K.J., Kerbyson, D.J.: 0.374 pflop/s trillion-particle kinetic modeling of laser plasma interaction on roadrunner. In: Proc. of Supercomputing. IEEE Press, Los Alamitos (2008)Google Scholar
  2. [CK76]
    Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput Phys. 22, 330 (1976)CrossRefGoogle Scholar
  3. [CLS06]
    Crouseilles, N., Latu, G., Sonnendrücker, E.: Hermite spline interpolation on patches for a parallel solving of the Vlasov-Poisson equation. Technical Report 5926, INRIA (2006), http://hal.inria.fr/inria-00078455/en/
  4. [CLS09]
    Crouseilles, N., Latu, G., Sonnendrücker, E.: A parallel Vlasov solver based on local cubic spline interpolation on patches. J. Comput. Phys. 228(5), 1429–1446 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. [LCGS07]
    Latu, G., Crouseilles, N., Grandgirard, V., Sonnendrücker, E.: Gyrokinetic semi-lagrangian parallel simulation using a hybrid openMP/MPI programming. In: Cappello, F., Herault, T., Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757, pp. 356–364. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [NVI09]
    NVIDIA. CUDA Programming Guide, 2.3 (2009)Google Scholar
  7. [SDG08]
    Stantchev, G., Dorland, W., Gumerov, N.: Fast parallel particle-to-grid interpolation for plasma PIC simulations on the GPU. J. Parallel Distrib. Comput. 68(10), 1339–1349 (2008)CrossRefGoogle Scholar
  8. [SRBG99]
    Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-lagrangian method for the numerical resolution of the Vlasov equations. J. Comput. Phys. 149, 201–220 (1999)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guillaume Latu
    • 1
    • 2
  1. 1.CEA, IRFMSaint-Paul-lez-DuranceFrance
  2. 2.Strasbourg 1 University & INRIA/Calvi projectFrance

Personalised recommendations