Multi-Resolution Cellular Automata for Real Computation

  • James I. Lathrop
  • Jack H. Lutz
  • Brian Patterson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6735)

Abstract

This paper introduces multi-resolution cellular automata (MRCA), a multi-resolution variant of cellular automata. Cells in an MRCA are allowed to “fission” one or more times during the course of execution. At any given time, the MRCA may thus be carrying out computations on a variety of spatial scales. Our main theorem uses the MRCA model to give a natural characterization of the computability of sets in Euclidean space, provided that their boundaries are computably nowhere dense.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space I: Closed and compact subsets. Theoretical Computer Science 219, 65–93 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Braverman, M.: On the complexity of real functions. In: Forty-Sixth Annual IEEE Symposium on Foundations of Computer Science, pp. 155–164 (2005)Google Scholar
  3. 3.
    Braverman, M., Cook, S.: Computing over the reals: Foundations for scientific computing. Notices of the AMS 53(3), 318–329 (2006)MathSciNetMATHGoogle Scholar
  4. 4.
    Burks, A.: Essays on Cellular Automata. Univeristy of Illinois Press, US (1970)MATHGoogle Scholar
  5. 5.
    Carroll, L.: Alice’s Adventures in Wonderland. Project Gutenberg (2008)Google Scholar
  6. 6.
    Copeland, B.J.: Accelerating Turing machines. Minds and Machines 12, 281–301 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Griffeath, D., Moore, C.: New Constructions in Cellular Automata. Oxford University Press, USA (2003)MATHGoogle Scholar
  8. 8.
    Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)MathSciNetMATHGoogle Scholar
  9. 9.
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic Logic 65(2), 567–604 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ko, K., Friedman, H.: Computational complexity of real functions. Theoretical Computer Science 20, 323–352 (1982)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)CrossRefMATHGoogle Scholar
  12. 12.
    Kreitz, C., Weihrauch, K.: Complexity theory on real numbers and functions. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 165–174. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  13. 13.
    Lacombe, D.: Extension de la notion de fonction recursive aux fonctions d’une ow plusiers variables reelles, and other notes. Comptes Rendus (1955), 240:2478-2480; 241:13-14, 151-153, 1250-1252Google Scholar
  14. 14.
    McIntosh, H.V.: One Dimensional Cellular Automata. Luniver Press, United Kingdom (2009)Google Scholar
  15. 15.
    Myrvold, W.C.: The decision problem for entanglement. In: Cohen, R.S., Horne, M.S.J. (eds.) Potentiality, Entanglement and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony, pp. 177–190. Kluwer Academic Publishers, Dordrecht and Boston (1997)CrossRefGoogle Scholar
  16. 16.
    Parker, M.W.: Undecidability in ℝn: Riddled basins, the KAM tori, and the stability of the solar system. Philosophy of Science 70, 359–382 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Parker, M.W.: Three concepts of decidability for general subsets of uncountable spaces. Theoretical Computer Science 351, 2–13 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)CrossRefMATHGoogle Scholar
  19. 19.
    Schaller, M., Svozil, K.: Scale-invariant cellular automata and self-similar Petri nets. The European Physical Journal B 69, 297–311 (2009)CrossRefGoogle Scholar
  20. 20.
    Schiff, J.: Cellular Automata: A Discrete View of the World. Wiley Interscience, USA (2008)MATHGoogle Scholar
  21. 21.
    Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936)MathSciNetMATHGoogle Scholar
  22. 22.
    Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem. A correction. Proc. London Math. Soc. 43(2), 544–546 (1936)MATHGoogle Scholar
  23. 23.
    Turing, A.M.: Systems of Logic Based on Ordinals. Ph.D. thesis, Princeton, New Jersey, USA (1938)Google Scholar
  24. 24.
    Weihrauch, K.: Computability. Springer, New York (1987)CrossRefMATHGoogle Scholar
  25. 25.
    Weihrauch, K.: Computable Analysis. An Introduction. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  26. 26.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, Illinois, USA (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • James I. Lathrop
    • 1
  • Jack H. Lutz
    • 1
  • Brian Patterson
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmesUnited States of America

Personalised recommendations