Complexity Issues for Preorders on Finite Labeled Forests

  • Peter Hertling
  • Victor Selivanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6735)

Abstract

We prove that three preorders on the finite k-labeled forests are polynomial time computable. Together with an earlier result of the first author, this implies polynomial-time computability for an important initial segment of the corresponding degrees of discontinuity of k-partitions on the Baire space. Furthermore, we show that on ω-labeled forests the first of these three preorders is polynomial time computable as well while the other two preorders are NP-complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural complexity. I. In: EATCS Monographs on Theoretical Computer Science, vol. 11, Springer, Berlin (1988)Google Scholar
  2. 2.
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural complexity II. In: EATCS Monographs on Theoretical Computer Science, vol. 22, Springer, Berlin (1990)Google Scholar
  3. 3.
    Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis. Bulletin of Symbolic Logic 17(1), 73–117 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability. J. Symb. Log. 76(1), 143–176 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity Theory. Monographs in Computer Science. Springer, New York (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Hertling, P.: A topological complexity hierarchy of functions with finite range. Technical Report 223, Centre de recerca matematica, Institut d’estudis catalans, Barcelona, Workshop on Continuous Algorithms and Complexity (October 1993)Google Scholar
  8. 8.
    Hertling, P.: Topologische Komplexitätsgrade von Funktionen mit endlichem Bild. Informatik Berichte 152, FernUniversität Hagen, Hagen (December 1993)Google Scholar
  9. 9.
    Hertling, P.: Unstetigkeitsgrade von Funktionen in der effektiven Analysis. PhD thesis, Fachbereich Informatik, FernUniversität Hagen (1996)Google Scholar
  10. 10.
    Hirsch, M.D.: Applications of topology to lower bound estimates in computer science. In: Hirsch, M.W., et al. (eds.) From topology to computation: Proceedings of the Smalefest, pp. 395–418. Springer, New York (1993)CrossRefGoogle Scholar
  11. 11.
    Kechris, A.S.: Classical descriptive set theory.. Graduate Texts in Mathematics, vol. 156. Springer, Berlin (1995)MATHGoogle Scholar
  12. 12.
    Kosub, S.: NP-partitions over posets with an application to reducing the set of solutions of NP problems. Theory Comput. Syst. 38(1), 83–113 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kosub, S., Wagner, K.W.: The Boolean Hierarchy of NP-Partitions. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 157–168. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Kudinov, O.V., Selivanov, V.L.: Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 289–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kudinov, O.V., Selivanov, V.L.: Undecidability in the homomorphic quasiorder of finite labelled forests. J. Log. Comput. 17(6), 1135–1151 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kudinov, O.V., Selivanov, V.L.: A Gandy Theorem for Abstract Structures and Applications to First-Order Definability. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 290–299. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Kudinov, O.V., Selivanov, V.L., Zhukov, A.V.: Undecidability in Weihrauch Degrees. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 256–265. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Kwuida, L., Lehtonen, E.: On the homomorphism order of labeled posets. Order (2010)Google Scholar
  19. 19.
    Lehtonen, E.: Labeled posets are universal. Eur. J. Comb. 29(2), 493–506 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Selivanov, V.: Boolean hierarchies of partitions over a reducible base. Algebra Logika 43(1), 77–109 (2004); Translation in Algebra and Logic 43(1), 44-61MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Selivanov, V.L.: Hierarchies of \(\Delta^0_2\)–measurable k–partitions. Mathematical Logic Quarterly 53(4–5), 446–461 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    von Stein, T.: Vergleich nicht konstruktiv lösbarer Probleme in der Analysis. Diplomarbeit, Fakultät für Informatik, FernUniversität Hagen (March 1989)Google Scholar
  23. 23.
    Weihrauch, K.: The degrees of discontinuity of some translators between representations of the real numbers. Informatik Berichte 129, FernUniversität Hagen, Hagen (July 1992)Google Scholar
  24. 24.
    Weihrauch, K.: The TTE-interpretation of three hierarchies of omniscience principles. Informatik Berichte 130, FernUniversität Hagen, Hagen (September 1992)Google Scholar
  25. 25.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Hertling
    • 1
  • Victor Selivanov
    • 2
  1. 1.Institut für Theoretische Informatik, Mathematik und Operations ResearchUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.A.P. Ershov Institute of Informatics SystemsNovosibirskRussia

Personalised recommendations