Advertisement

Knowledgeable Feedback via a Cast of Virtual Characters with Different Competences

  • Wouter Beek
  • Jochem Liem
  • Floris Linnebank
  • René Bühling
  • Michael Wißner
  • Esther Lozano
  • Jorge Gracia del Río
  • Bert Bredeweg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6738)

Abstract

DynaLearn (http://www.DynaLearn.eu) develops a cognitive artefact that engages learners in an active learning by modelling process to develop conceptual system knowledge. Learners create external representations using diagrams. The diagrams capture conceptual knowledge using the Garp3 Qualitative Reasoning (QR) formalism [2]. The expressions can be simulated, confronting learners with the logical consequences thereof. To further aid learners, DynaLearn employs a sequence of knowledge representations (Learning Spaces, LS), with increasing complexity in terms of the modelling ingredients a learner can use [1]. An online repository contains QR models created by experts/teachers and learners. The server runs semantic services [4] to generate feedback at the request of learners via the workbench. The feedback is communicated to the learner via a set of virtual characters, each having its own competence [3]. A specific feedback thus incorporates three aspects: content, character appearance, and a didactic setting (e.g. Quiz mode). In the interactive event we will demonstrate the latest achievements of the DynaLearn project. First, the 6 learning spaces for learners to work with. Second, the generation of feedback relevant to the individual needs of a learner using Semantic Web technology. Third, the verbalization of the feedback via different animated virtual characters, notably: Basic help, Critic, Recommender, Quizmaster & Teachable agent.

Keywords

Conceptual Knowledge External Representation Virtual Character Learn Space Qualitative Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bredeweg, B., Liem, J., Beek, W., Salles, P., Linnebank, F.: Learning spaces as representational scaffolds for learning conceptual knowledge of system behaviour. In: Wolpers, M., Kirschner, P.A., Scheffel, M., Lindstaedt, S., Dimitrova, V. (eds.) EC-TEL 2010. LNCS, vol. 6383, pp. 46–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bredeweg, B., Linnebank, F.E., Bouwer, A.J., Liem, J.: Garp3 — Workbench for qualitative modelling and simulation. Ecological Informatics 4(5-6), 263–281 (2009)CrossRefGoogle Scholar
  3. 3.
    Mehlmann, G., Häring, M., Bühling, R., Wißner, M., André, E.: Multiple agent roles in an adaptive virtual classroom environment. In: Proc. of the 10th Int. Conf. on Intelligent Virtual Agents, pp. 250–256. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Gracia, J., Liem, J., Lozano, E., Corcho, O., Trna, M., Gómez-Pérez, A., Bredeweg, B.: Semantic techniques for enabling knowledge reuse in conceptual modelling. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 82–97. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wouter Beek
    • 1
  • Jochem Liem
    • 1
  • Floris Linnebank
    • 1
  • René Bühling
    • 2
  • Michael Wißner
    • 2
  • Esther Lozano
    • 3
  • Jorge Gracia del Río
    • 3
  • Bert Bredeweg
    • 1
  1. 1.Informatics InstituteUniversity of AmsterdamAmsterdamNetherlands
  2. 2.Multimedia Concepts and ApplicationsUniversity of AugsburgAugsburgGermany
  3. 3.Ontology Engineering GroupUniversidad Politécnica de MadridMadridSpain

Personalised recommendations