Advertisement

Character Roles and Interaction in the DynaLearn Intelligent Learning Environment

  • Michael Wißner
  • Wouter Beek
  • Esther Lozano
  • Gregor Mehlmann
  • Floris Linnebank
  • Jochem Liem
  • Markus Häring
  • René Bühling
  • Jorge Gracia
  • Bert Bredeweg
  • Elisabeth André
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6738)

Abstract

In this paper we present the cast of pedagogical agents in the DynaLearn Intelligent Learning Environment. We describe the different character roles and how they interact with the learners. Our aim in using these characters is to increase the learners’ motivation.

Keywords

Pedagogical Agents Virtual Characters Intelligent Learning Environments Motivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conati, C., Zhao, X.: Building and evaluating an intelligent pedagogical agent to improve the effectiveness of an educational game. In: Proc. of the 9th International Conference on Intelligent User Interfaces, pp. 6–13. ACM, New York (2004)Google Scholar
  2. 2.
    Biswas, G., Roscoe, R., Jeong, H., Sulcer, B.: Promoting self-regulated learning skills in agent-based learning environments. In: Proc. of the 17th International Conference on Computers in Education (2009)Google Scholar
  3. 3.
    Graesser, A.C., Person, N.K., Harter, D.: The Tutoring Research Group: Teaching tactics and dialog in autotutor. International Journal of AI in Education 12, 257–279 (2001)Google Scholar
  4. 4.
    Kim, Y., Baylor, A.L.: PALS Group: Pedagogical agents as learning companions: The role of agent competency and type of interaction. Educational Technology Research and Development 54(3), 223–243 (2006)CrossRefGoogle Scholar
  5. 5.
    Bredeweg, B., Linnebank, F., Bouwer, A., Liem, J.: Garp3 – workbench for qualitative modelling and simulation. Ecological Informatics 4(5-6), 263 (2009); Special Issue: Qualitative models of ecological systemsCrossRefGoogle Scholar
  6. 6.
    Mehlmann, G., Häring, M., Bühling, R., Wißner, M., André, E.: Multiple agent roles in an adaptive virtual classroom environment. In: Proc. of the 10th International Conference on Intelligent Virtual Agents, pp. 250–256. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    de Koning, K., Breuker, J., Wielinga, B., Bredeweg, B.: Model-based reasoning about learner behaviour. Artificial Intelligence 117, 173–229 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Goddijn, F., Bouwer, A., Bredeweg, B.: Automatically generating tutoring questions for qualitative simulations. In: Proc. of the 17th International Workshop on Qualitative Reasoning, pp. 87–94 (2003)Google Scholar
  9. 9.
    Gracia, J., Liem, J., Lozano, E., Corcho, O., Trna, M., Gómez-Pérez, A., Bredeweg, B.: Semantic techniques for enabling knowledge reuse in conceptual modelling. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 82–97. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Wißner
    • 1
  • Wouter Beek
    • 2
  • Esther Lozano
    • 3
  • Gregor Mehlmann
    • 1
  • Floris Linnebank
    • 2
  • Jochem Liem
    • 2
  • Markus Häring
    • 1
  • René Bühling
    • 1
  • Jorge Gracia
    • 3
  • Bert Bredeweg
    • 2
  • Elisabeth André
    • 1
  1. 1.Human Centered MultimediaAugsburg UniversityGermany
  2. 2.Human-Computer StudiesUniversity of AmsterdamThe Netherlands
  3. 3.Ontology Engineering GroupUniversidad Politécnica de MadridSpain

Personalised recommendations