Shell-like Structures pp 219-232

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 15)

On the Nonlinear Theory of Two-Phase Shells

Chapter

Abstract

We discuss the nonlinear theory of shells made of material undergoing phase transitions (PT). The interest to such thin-walled structures is motivated by applications of thin films made of martensitic materials and needs of modeling biological membranes. Here we present the resultant, two-dimensional thermodynamics of non-linear theory of shells undergoing PT. The global and local formulations of the balances of momentum, moment of momentum, energy and entropy are given. Two temperature fields on the shell base surface are introduced: the referential mean temperature and its deviation, as well as two corresponding dual fields: the referential entropy and its deviation. Additional surface heat flux and the extra heat flux vector fields appear as a result of through-the-thickness integration procedure. Within the framework of the resultant shell thermodynamics we derive the continuity conditions along the curvilinear phase interface which separates two material phases. These conditions allow us to formulate the kinetic equation describing the quasistatic motion of the interface relative to the shell base surface. The kinetic equation is expressed by the jump of the Eshelby tensor across the phase interface. In the case of thermodynamic equilibrium the variational statement of the static problem of two-phase shell is presented.

Keywords

Non-linear shell Shell thermodynamics Phase transition Cosserat shell Micropolar shell Kinetic equation Singular curve

Preview

References

1. 1.
Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge (2006)
2. 2.
Agrawal, A., Steigmann, D.J.: Coexistent fluid-phase equilibria in biomembranes with bending elasticity. Journal of Elasticity 93(1), 63–80 (2008)
3. 3.
Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Archive for Rational Mechanics and Analysis 100(1), 13–52 (1987)
4. 4.
Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, New Jersey (2008)
5. 5.
Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, Oxford (2003)Google Scholar
6. 6.
Bhattacharya, K., DeSimone, A., Hane, K.F., James, R.D., Palmstrøm, C.J.: Tents and tunnels on martensitic films. Materials Science and Engineering A 273(Sp. Iss. SI), 685–689 1999
7. 7.
Bhattacharya, K., James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. Journal of the Mechanics and Physics of Solids 47(3), 531–576 (1999)
8. 8.
Bhattacharya, K., James, R.D.: The material is the machine. Science 307(5706), 53–54 (2005)
9. 9.
Bhattacharya, K., Kohn, R.V.: Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Archive for Rational Mechanics and Analysis 139(2), 99–180 (1997)
10. 10.
Boulbitch, A.A.: Equations of heterophase equilibrium of a biomembrane. Archive of Applied Mechanics 69(2), 83–93 (1999)
11. 11.
Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method (in Polish). Wydawnictwo IPPT PAN, Warszawa (2004)Google Scholar
12. 12.
Elliott, C.M., Stinner, B.: A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70(8), 2904–2928 (2010)
13. 13.
Eremeyev, V.A., Pietraszkiewicz, W.: The non-linear theory of elastic shells with phase transitions. Journal of Elasticity 74(1), 67–86 (2004)
14. 14.
Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. Journal of Elasticity 85(2), 125–152 (2006)
15. 15.
Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Archives of Mechanics 61(1), 41–67 (2009)Google Scholar
16. 16.
Eremeyev, V.A., Pietraszkiewicz, W.: On tension of a two-phase elastic tube. In: Pietraszkiewicz, W., Kreja, I., (eds.) Shell Structures: Theory and Applications, vol. 2, pp. 63–66. CRC Press, Boca Raton (2010)Google Scholar
17. 17.
Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transition. Journal of the Mechanics and Physics of Solids doi:10.1016/j.jmps.2011.04.005 (2011)
18. 18.
Eremeyev, V.A., Zubov, L.M.: Mechanics of Elastic Shells. Nauka, Moscow (2008) (in Russian)Google Scholar
19. 19.
Gibbs, J.W.: On the equilibrium of heterogeneous substances. In: The Collected Works of Willard Gibbs, J. pp. 55–353. Longmans, Green & Co, New York (1928)Google Scholar
20. 20.
Green, A.E., Naghdi, P.M.: Non-isothermal theory of rods, plates and shells. International Journals of Solids and Structures 6(2), 635–648 (1970)Google Scholar
21. 21.
Green, A.E., Naghdi, P.M.: On thermal effects in the theory of shells. Proceedings of the Royal Society of London Series A 365(1721), 161–190 (1979)
22. 22.
Grinfeld, M.: Thermodynamics Methods in the Theory of Heterogeneous Systems. Longman, Harlow (1991)Google Scholar
23. 23.
Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, Berlin (2000)Google Scholar
24. 24.
Hane, K.F.: Bulk and thin film microstructures in untwinned martensites. Journal of the Mechanics and Physics of Solids 47, 1917–1939 (1999)
25. 25.
He, Y.J., Sun, Q.P.: Effects of structural and material length scales on stress-induced martensite macro-domain patterns in tube configurations. International Journal of Solids and Structures 46(16), 3045–3060 (2009)
26. 26.
He, Y.J., Sun, Q.P.: Scaling relationship on macroscopic helical domains in NiTi tubes. International Journal of Solids and Structures 46(24), 4242–4251 (2009)
27. 27.
He, Y.J., Sun, Q.P.: Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates. International Journal of Mechanical Sciences 52(2), 198–211 (2010)
28. 28.
He, Y.J., Sun, Q.P.: Rate-dependent domain spacing in a stretched NiTi strip. International Journal of Solids and Structures 47(20), 2775–2783 (2010)
29. 29.
James, R.D., Hane, K.F.: Martensitic transformations and shape-memory materials. Acta Materialia 48(1), 197–222 (2000)
30. 30.
James, R.D., Rizzoni, R.: Pressurized shape memory thin films. Journal of Elasticity 59(1–3), 399–436 (2000)
31. 31.
Kienzler, R., Herrman, G.: Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Springer, Berlin (2000)Google Scholar
32. 32.
Lagoudas, D.C. (ed.): Shape Memory Alloys. Modeling and Engineering Applications. Springer, Berlin (2008)Google Scholar
33. 33.
Li, Z.Q., Sun, Q.P.: The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. International Journal of Plasticity 18(11), 1481–1498 (2002)
34. 34.
Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)
35. 35.
Makowski, J., Pietraszkiewicz, W.: Thermomechanics of shells with singular curves. Zesz. Nauk. No 528/1487/2002, IMP PAN, Gdańsk (2002)Google Scholar
36. 36.
Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman Hall, London (1993)Google Scholar
37. 37.
Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate-independent phase transformations using an extremum principle. Archive for Rational Mechanics and Analysis 162(2), 137–177 (2002)
38. 38.
Miyazaki, S., Fu, Y.Q., Huang, W.M. (eds.): Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press, Cambridge (2009)Google Scholar
39. 39.
Murdoch, A.I.: On the entropy inequality for material interfaces. ZAMP 27(5), 599–605 (1976)
40. 40.
Murdoch, A.I.: A thermodynamical theory of elastic material interfaces. The Quarterly Journal of Mechanics and Applied Mathematics 29(3), 245–274 (1976)
41. 41.
Pieczyska, E.: Activity of stress-induced martensite transformation in TiNi shape memory alloy studied by infrared technique. Journal of Modern Optics 57(18, Sp. Iss. SI), 1700–1707 (2010)
42. 42.
Pietraszkiewicz, W.: On non-linear shell thermodynamics with interstitial working. In: Wilmański, K., Jędrysiak, J., Michalak, B. (eds.) Mathematical Methods in Continuum Mechanics, Chapter 11 (in print). Politechnika $$\L$$ódzka, $$\L$$ódź (2011)Google Scholar
43. 43.
Pietraszkiewicz, W., Chróścielewski, J., Makowski, J.: On dynamically and kinematically exact theory of shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: Theory and Applications, pp. 163–167. Taylor & Francis, London (2005)Google Scholar
44. 44.
Pietraszkiewicz, W., Eremeyev, V.A., Konopińska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2), 150–159 (2007)
45. 45.
Rubin, M.B.: Restrictions on linear constitutive equations for a rigid heat conducting Cosserat shell. International Journal of Solids and Structures 41(24–25), 7009–7033 (2004)
46. 46.
Rubin, M.B.: Heat conduction between confocal elliptical surfaces using the theory of a Cosserat shell. International Journal of Solids and Structures 43(2), 295–306 (2006)
47. 47.
Shu, Y.C.: Heterogeneous thin films of martensitic materials. Archive of Rational Mechanics and Analysis 153(1), 39–90 (2000)
48. 48.
Shu, Y.C.: Shape-memory micropumps. Materials Transactions 43(5, Sp. Iss. SI), 1037–1044 (2002)
49. 49.
Simmonds, J.G.: The thermodynamical theory of shells: Descent from 3-dimensions without thickness expansions. In: Axelrad, E.K., Emmerling, F.A. (eds.) Flexible Shells, Theory and Applications, pp. 1–11. Springer, Berlin (1984)Google Scholar
50. 50.
Simmonds, J.G.: A simple nonlinear thermodynamic theory of arbitrary elastic beams. Journal of Elasticity 81(1), 51–62 (2005)
51. 51.
Simmonds, J.G.: A classical, nonlinear thermodynamic theory of elastic shells based on a single constitutive assumption. Journal of Elasticity, doi:10.1007/s10659-010-9293-2 (2011)
52. 52.
Sun, Q.P. (ed.): Mechanics of Martensitic Phase Transformation in Solids. Kluwer, Dordrecht (2002)Google Scholar
53. 53.
Tobushi, H., Pieczyska, E.A., Nowacki, W.K., Sakuragi, T., Sugimoto, Y.: Torsional deformation and rotary driving characteristics of SMA thin strip. Archives of Mechanics 61(3–4), 241–257 (2009)Google Scholar
54. 54.
Truesdell, C.: Rational Thermodynamics, 2nd edn. Springer, New York (1984)Google Scholar
55. 55.
Truesdell, C.A.: The Elements of Continuum Mechanics. Springer, Berlin (1966)Google Scholar
56. 56.
Zhang, X.H., Feng, P., He, Y.J., Yu, T.X., Sun, Q.P.: Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. International Journal of Mechanical Sciences 52(12), 1660–1670 (2010)
57. 57.
Zhilin, P.A.: Mechanics of deformable directed surfaces. International Journals of Solids and Structures 12(9–10), 635–648 (1976)