Advertisement

Brain Signatures of Team Performance

  • Silke Dodel
  • Joseph Cohn
  • Jochen Mersmann
  • Phan Luu
  • Chris Forsythe
  • Viktor Jirsa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6780)

Abstract

We report results from a dual electroencephalography (EEG) study, in which two-member teams performed a simulated combat scenario. Our aim was to distinguish expert from novice teams by their brain dynamics. Our findings suggest that dimensionality increases in the joint brain dynamics of the team members is a signature of increased task demand, both objective, e.g. increased task difficulty, and subjective, e.g. lack of experience in performing the task. Furthermore in each team we identified a subspace of joint brain dynamics related to team coordination. Our approach identifies signatures specific to team coordination by introducing surrogate team data as a baseline for joint brain dynamics without team coordination. This revealed that team coordination affects the subspace itself in which the joint brain dynamics of the team members are evolving, but not its dimensionality. Our results confirm the possibility to identify signatures of team coordination from the team members’ brain dynamics.

Keywords

team coordination manifold dimension brain dynamics subspace EEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodel, S., Pillai, A., Fink, P., Muth, E., Stripling, R., Schmorrow, D., Cohn, J., Jirsa, V.: Observer-independent dynamical measures of team coordination and performance. In: Danion, F., Latash, M.L. (eds.) Motor Control, pp. 72–103 (2010)Google Scholar
  2. 2.
    Kelso, J.A.S.: Dynamic Patterns: The Self-Organization of Brain and Behavior. The MIT Press, Cambridge (1995)Google Scholar
  3. 3.
    Scholz, J.P., Schöner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain. Res. 126(3), 289–306 (1999)CrossRefGoogle Scholar
  4. 4.
    Jirsa, V.K., Kelso, J.A.S.: The Excitator as a Minimal Model for discrete and rhythmic movement Coordination. Journ. Motor. Behav. 37(1), 35–51 (2005)CrossRefGoogle Scholar
  5. 5.
    Huys, R., Studenka, B.E., Zelaznik, H.N., Jirsa, V.K.: Distinct timing mechanisms are implicated in distinct circle drawing tasks. Neuroscience Letters 472(1), 24–28 (2010)CrossRefGoogle Scholar
  6. 6.
    Huys, R., Fernandez, L., Bootsma, R.J., Jirsa, V.K.: Fitts law is not continuous in reciprocal aiming. Proc. R. Soc. B 277(1685), 1179–1184 (2009)CrossRefGoogle Scholar
  7. 7.
    Huys, R., Studenka, B.E., Rheaume, N.L., Zelaznik, H.N., Jirsa, V.K.: Distinct Timing Mechanisms Produce Discrete and Continuous Movements. PLoS Comput. Biol. 4(4), e1000061 (2008), doi:10.1371/journal.pcbi.1000061Google Scholar
  8. 8.
    Calvin, S., Jirsa, V.K.: Perspectives on the Dynamic Nature of Coupling in Human Coordination. In: Huys, R., Jirsa, V.K. (eds.) Nonlinear Dynamics in Human Behavior. SCI, vol. 328, pp. 91–114. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting state activity in the brain. Nature Reviews Neuroscience 12, 43–56 (2011)CrossRefGoogle Scholar
  10. 10.
    Mcintosh, A.R., Kovacevic, N., Lippe, S., Garrett, D., Grady, C., Jirsa, V.K.: The development of a noisy brain. Archives Italiennes de Biologie 148, 323–337 (2010)Google Scholar
  11. 11.
    Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K.: Noise during rest enables the exploration of the brain’s dynamic repertoire. Plos Comp. Biol. 4(10), e1000196 (2008), doi: doi:10.1371/journal.pcbi.1000196Google Scholar
  12. 12.
    Deco, G., Jirsa, V.K., Sporns, O., McIntosh, A.R., Kötter, R.: The Key Role of Coupling, Delay and Noise in Resting Brain Fluctuations. PNAS 106, 10302–10307 (2009)CrossRefGoogle Scholar
  13. 13.
    Banerjee, A., Tognoli, E., Assisi, C., Scott, J., Jirsa, V.: Mode Level Cognitive Subtraction (MLCS) quantifies spatiotemporal reorganization in large-scale brain topographies. NeuroImage 42(2), 663–674 (2008)CrossRefGoogle Scholar
  14. 14.
    Salas, E., Cooke, N.J., Rosen, M.A.: On Teams, Teamwork, and Team Performance: Discoveries and Developments. Human Factors 50(3), 540–547 (2008)CrossRefGoogle Scholar
  15. 15.
    Cooke, N.J., Gorman, J.C., Duran, J.L., Taylor, A.R.: Team cognition in experienced command-and-control teams. Journal of Experimental Psychology: Applied 13(3), 146–157 (2007)Google Scholar
  16. 16.
    DeChurch, L.A., Mesmer-Magnus, J.R.: The Cognitive Underpinnings of Effective Teamwork: A Meta-Analysis. Journal of Applied Psychology 95(1), 32–53 (2010)CrossRefGoogle Scholar
  17. 17.
    Tognoli, E., Lagarde, J., DeGuzman, G.C., Kelso, J.A.S.: The phi complex as a neuromarker of human social coordination. PNAS 104(19), 8190–8195 (2007)CrossRefGoogle Scholar
  18. 18.
    Lindenberger, U., Li, S.-C., Gruber, W., Müller, V.: Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience 10, 22–34 (2009)CrossRefGoogle Scholar
  19. 19.
    Stevens, R.H., Galloway, T., Berka, C., Sprang, M.: Can Neurophysiologic Synchronies Provide a Platform for Adapting Team Performance? In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 658–667. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L.: Inter-Brain Synchronization during Social Interaction. PLoS ONE 5(8), e12166 (2010), doi:10.1371/journal.pone.0012166Google Scholar
  21. 21.
    Schippers, M.B., Roebroeck, A., Renkena, R., Nanettia, L., Keysers, C.: Mapping the information flow from one brain to another during gestural communication. PNAS 107(20), 9388–9393 (2010)CrossRefGoogle Scholar
  22. 22.
    Anders, S., Heinzleb, J., Weiskopf, N., Ethoferd, T., Haynes, J.-D.: Flow of affective information between communicating brains. NeuroImage 54(1), 439–446 (2011)CrossRefGoogle Scholar
  23. 23.
    Astolfi, L., Toppi, J., Fallani, F.V., Vecciato, G., Salinari, S., Mattia, D., Cincotti, F., Babiloni, F.: Neuroelectrical Hyperscanning Measures Simultaneous Brain Activity in Humans. Brain Topogr 23, 243–256 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Silke Dodel
    • 1
  • Joseph Cohn
    • 2
  • Jochen Mersmann
    • 3
  • Phan Luu
    • 4
  • Chris Forsythe
    • 5
  • Viktor Jirsa
    • 1
    • 6
  1. 1.Center for Complex Systems and Brain SciencesFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Defense Advanced Research Projects AgencyUSA
  3. 3.CodeBox Computerdienste GmbHStuttgartGermany
  4. 4.Electrical Geodesics, Inc.EugeneUSA
  5. 5.Cognitive Science and ApplicationsSandia National LaboratoriesAlbuquerqueUSA
  6. 6.Faculté des Sciences du SportTheoretical Neuroscience Group, CNRS UMR 6233, Université de la Méditerranée, Institute of Movement SciencesMarseilleFrance

Personalised recommendations