Advertisement

Refinement of Synchronizable Places with Multi-workflow Nets

Weak Termination Preserved!
  • Kees M. van Hee
  • Natalia Sidorova
  • Jan Martijn van der Werf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6709)

Abstract

Stepwise refinement is a well-known strategy in system modeling. The refinement rules should preserve essential behavioral properties, such as deadlock freedom, boundedness and weak termination. A well-known example is the refinement rule that replaces a safe place of a Petri net with a sound workflow net. In this case a token on the refined place undergoes a procedure that is modeled in detail by the refining workflow net.

We generalize this rule to component-based systems, where in the first, high-level, refinement iterations we often encounter in different components places that represent in fact the counterparts of the same procedure “simultaneously” executed by the components. The procedure involves communication between these components.

We model such a procedure as a multi-workflow net, which is actually a composition of communicating workflows. Behaviorally correct multi-workflow nets have the weak termination property. The weak termination requirement is also applied to the system being refined. We want to refine selected places in different components with a multi-workflow net in such a way that the weak termination property is preserved through refinements. We introduce the notion of synchronizable places and show that a sufficient condition for preserving weak termination is that the places to be refined are synchronizable. We give a method to decide if a given set of places is synchronizable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. Journal of Logic and Algebraic Programming 47(2), 47–145 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 360–376. Springer, Heidelberg (1987)Google Scholar
  3. 3.
    Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  4. 4.
    de Frutos Escrig, D., Johnen, C.: Decidability of home space property. Technical report, Univ. de Paris-Sud, Centre d’Orsay, Laboratoire de Recherche en Informatique Report LRI–503 (July 1989) NewsletterInfo: 35 Google Scholar
  5. 5.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    van Glabbeek, R.J.: The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  7. 7.
    van Hee, K.M., Mooij, A.J., Sidorova, N., van der Werf, J.M.E.M.: Soundness-preserving refinements of service compositions. In: Web Services and Formal Methods 10. LNCS, Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Hee, K.M.v., Sidorova, N., Voorhoeve, M.: Soundness and separability of workflow nets in the stepwise refinement approach. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, p. 335. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    van Hee, K.M., Sidorova, N., Voorhoeve, M.: Generalised soundness of workflow nets is decidable. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 197–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    van Hee, K.M., Sidorova, N., van der Werf, J.M.E.M.: Construction of asynchronous communicating systems: Weak termination guaranteed! In: Baudry, B., Wohlstadter, E. (eds.) SC 2010. LNCS, vol. 6144, pp. 106–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  12. 12.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science, pp. 203–210. IEEE Computer Society Press, Los Alamitos (1988)Google Scholar
  13. 13.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  14. 14.
    Murata, T., Suzuki, I.: A method for stepwise refinement and abstraction of Petri nets. Journal of Computer and System Sciences 27(1), 51 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Reisig, W.: A strong part of concurrency. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 238–272. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  16. 16.
    Sidorova, N., Stahl, C., Trčka, N.: Workflow soundness revisited: Checking correctness in the presence of data while staying conceptual. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 530–544. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Suzuki, I., Kasami, T.: Three measures for synchronic dependence in petri nets. Acta Informatica 19, 325–338 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow processes using Woflan. Computer Journal 44, 246–279 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kees M. van Hee
    • 1
  • Natalia Sidorova
    • 1
  • Jan Martijn van der Werf
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations