Advertisement

Self-Energy-Functional Theory

  • Michael Potthoff
Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 171)

Abstract

Self-energy-functional theory is a formal framework which allows us to derive non-perturbative and thermodynamically consistent approximations for lattice models of strongly correlated electrons from a general dynamical variational principle. The construction of the self-energy functional and the corresponding variational principle is developed within the path-integral formalism. Different cluster mean-field approximations, such as the variational cluster approximation and cluster extensions of dynamical mean-field theory, are derived in this context and their mutual relationship and internal consistency are discussed.

Keywords

Reference System Hubbard Model Dyson Equation Correlate Site Bath Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would like to thank M. Aichhorn, F.F. Assaad, E. Arrigoni, M. Balzer, R. Bulla, C. Dahnken, R. Eder, W. Hanke, A. Hewson, M. Jarrell, M. Kollar, G. Kotliar, A.I. Lichtenstein, A.J. Millis, W. Nolting, D. Senechal, A.-M.S. Tremblay and D. Vollhardt for cooperations and many helpful discussions. Support by the Deutsche Forschungsgemeinschaft within the SFB 668 (project A14) and FOR 1346 (project P1) is gratefully acknowledged.

References

  1. 1.
    A.A. Abrikosow, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics(Prentice-Hall, New Jersey, 1964)Google Scholar
  2. 2.
    J. Hubbard, Proc. R. Soc. London A 276, 238 (1963)ADSCrossRefGoogle Scholar
  3. 3.
    M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    J. Kanamori, Prog. Theor. Phys. (Kyoto) 30, 275 (1963)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    C. Gros, R. Valenti, Phys. Rev. B 48, 418 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    D. Sénéchal, D. Pérez, M. Pioro-Ladrière, Phys. Rev. Lett. 84, 522 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    G. Kotliar, D. Vollhardt, Phys. Today 57, 53 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Potthoff, Euro. Phys. J. B 32, 429 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    M. Potthoff, Euro. Phys. J. B 36, 335 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    M. Potthoff, M. Aichhorn, C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    M. Potthoff, Adv. Solid State Phys. 45, 135 (2005)CrossRefGoogle Scholar
  15. 15.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems(McGraw-Hill, New York, 1971)Google Scholar
  16. 16.
    J.W. Negele, H. Orland, Quantum Many-Particle Systems(Addison-Wesley, Redwood City, 1988)zbMATHGoogle Scholar
  17. 17.
    M. Potthoff, in Theory of electron spectroscopies, ed. by K. Baberschke, M. Donath, W. Nolting. Band-Ferromagnetism (Springer, Berlin, 2001)Google Scholar
  18. 18.
    J.M. Luttinger, Phys. Rev. 121, 942 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    H. Schweitzer, G. Czycholl, Solid State Commun. 74, 735 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    H. Schweitzer, G. Czycholl, Z. Phys. B 83, 93 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    M. Potthoff, W. Nolting, Z. Phys. B 104, 265 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    E. Müller-Hartmann, Z. Phys. B 74, 507 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    M. Potthoff, Condens. Mat. Phys. 9, 557 (2006)Google Scholar
  25. 25.
    R. Chitra, G. Kotliar, Phys. Rev. B 62, 12715 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    R. Chitra, G. Kotliar, Phys. Rev. B 63, 115110 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    M. Balzer, W. Hanke, M. Potthoff, Phys. Rev. B 77, 045133 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)ADSCrossRefGoogle Scholar
  29. 29.
    M.H. Hettler, M. Mukherjee, M. Jarrell, H.R. Krishnamurthy, Phys. Rev. B 61, 12739 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    G. Kotliar, S.Y. Savrasov, G. Pálsson, G. Biroli, Phys. Rev. Lett. 87, 186401 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    R. Eder, Phys. Rev. B 81(3), 035101 (2010). DOI 10.1103/PhysRevB.81.035101Google Scholar
  32. 32.
    M. Balzer, M. Potthoff, Phys. Rev. B 82, 174441 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, M. Potthoff, Phys. Rev. B 70, 245110 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    A.H. Nevidomskyy, C. Scheiber, D. Senechal, A.M.S. Tremblay, Phys. Rev. B 77, 064427 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Horiuchi, S. Kudo, T. Shirakawa,, Y. Ohta, Phys. Rev. B 78, 155128 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    T. Yoshikawa, M. Ogata, Phys. Rev. B 79, 144429 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    P. Sahebsara, D. Senechal, Phys. Rev. Lett. 100, 136402 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    D. Sénéchal, P.L. Lavertu, M.A. Marois, A.M.S. Tremblay, Phys. Rev. Lett. 94, 156404 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M. Aichhorn, E. Arrigoni, Europhys. Lett. 72, 117 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    M. Aichhorn, E. Arrigoni, M. Potthoff, W. Hanke, Phys. Rev. B 74, 024508 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    M. Aichhorn, E. Arrigoni, M. Potthoff, W. Hanke, Phys. Rev. B 74, 235117 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    P. Sahebsara, D. Senechal, Phys. Rev. Lett. 97, 257004 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    E. Arrigoni, M. Aichhorn, M. Daghofer, W. Hanke, New J. Phys. 11, 055066 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    P. Sahebsara, D. Senechal, arXiv: 0908.0474 (2009)Google Scholar
  45. 45.
    M. Aichhorn, H.G. Evertz, W. von der Linden, M. Potthoff, Phys. Rev. B 70, 235107 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    M. Aichhorn, E.Y. Sherman, H.G. Evertz, Phys. Rev. B 72, 155110 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    X. Lu, E. Arrigoni, Phys. Rev. B 79, 245109 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    G. Baym, Phys. Rev. 127, 1391 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    N.E. Bickers, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 62, 961 (1989)ADSCrossRefGoogle Scholar
  51. 51.
    J. Ortloff, M. Balzer, M. Potthoff, Euro. Phys. J. B 58, 37 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    J.M. Luttinger, Phys. Rev. 119, 1153 (1960)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    J. Kokalj, P. Prelovs̆ek, Phys. Rev. B 75, 045111 (2007)Google Scholar
  54. 54.
    A. Rosch, Eur. Phys. J. B 59, 495 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    W. Koller, D. Meyer, Y. Ono, A.C. Hewson, Europhys. Lett. 66, 559 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    K. Pozgajcic, preprint cond-mat 0407172(2004)Google Scholar
  57. 57.
    K. Inaba, A. Koga, S.I. Suga, N. Kawakami, Phys. Rev. B 72, 085112 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    K. Inaba, A. Koga, S.I. Suga, N. Kawakami, J. Phys. Soc. Jpn. 74, 2393 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    M. Eckstein, M. Kollar, M. Potthoff, D. Vollhardt, Phys. Rev. B 75, 125103 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    M. Caffarel, W. Krauth, Phys. Rev. Lett. 72, 1545 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    D. Sénéchal, Phys. Rev. B 81, 235125 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    M. Potthoff, W. Nolting, Phys. Rev. B 52, 15341 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    R.W. Helmes, T.A. Costi, A. Rosch, Phys. Rev. Lett. 100, 056403 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    M. Snoek, I. Titvinidze, C. Töke, K. Byczuk, W. Hofstetter, New J. Phys. 10, 093008 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 62, R9283 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    M. Balzer, B. Kyung, D. Sénéchal, A.M.S. Tremblay, M. Potthoff, Europhys. Lett. 85, 17002 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    W. Koller, N. Dupuis, J. Phys. Condens. Matter 18, 9525 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    M. Potthoff, M. Balzer, Phys. Rev. B 75, 125112 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    G. Biroli, O. Parcollet, G. Kotliar, Phys. Rev. B 69, 205108 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, H.R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    T. Maier, M. Jarrell, T. Pruschke, J. Keller, Euro. Phys. J. B 13, 613 (2000)ADSCrossRefGoogle Scholar
  72. 72.
    T. Minh-Tien, Phys. Rev. B 74, 155121 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    G. Kotliar, Euro. Phys. J. B 11, 27 (1999)ADSCrossRefGoogle Scholar
  74. 74.
    A.H. Nevidomskyy, A.M.T. D. Sénéchal, Phys. Rev. B 77, 075105 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    M. Potthoff, in Effective Models for Low-Dimensional Strongly Correlated Systems. ed. by G. Batrouni, D. Poilblanc (AIP proceedings, Melville, 2006)Google Scholar
  76. 76.
    D. Sénéchal, preprint cond-mat/0806.2690, lecture notes CIFAR – PITP International Summer School on Numerical Methods for Correlated Systems in Condensed Matter, SherbrookeGoogle Scholar
  77. 77.
    H.Q. Lin, J.E. Gubernatis, Comput. Phys. 7, 400 (1993)Google Scholar
  78. 78.
    R. Freund, in Band Lanczos Method, ed. by Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (SIAM, Philadelphia, 2000)Google Scholar
  79. 79.
    G. Li, W. Hanke, A.N. Rubtsov, S. Bäse, M. Potthoff, Phys. Rev. B 80, 195118 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    R. Eder, Phys. Rev. B 76, 241103(R) (2007)Google Scholar
  81. 81.
    R. Eder, Phys. Rev. B 78, 115111 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    M. Aichhorn, T. Saha-Dasgupta, R. Valenti, S. Glawion, M. Sing, R. Claessen, Phys. Rev. B 80, 115129 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    L. Chioncel, H. Allmaier, E. Arrigoni, A. Yamasaki, M. Daghofer, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 75, 140406 (2007)ADSCrossRefGoogle Scholar
  84. 84.
    H. Allmaier, L. Chioncel, E. Arrigoni, Phys. Rev. B 79, 235126 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    H. Allmaier, L. Chioncel, E. Arrigoni, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 81, 054422 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. B 81, 235122 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    M. Aichhorn, M. Hohenadler, C. Tahan, P.B. Littlewood, Phys. Rev. Lett. 100, 216401 (2008)ADSCrossRefGoogle Scholar
  88. 88.
    M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. B 81, 104303 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    N.H. Tong, Phys. Rev. B 72, 115104 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.I. Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations