Advertisement

An Argumentation Framework for Deriving Qualitative Risk Sensitive Preferences

  • Wietske Visser
  • Koen V. Hindriks
  • Catholijn M. Jonker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6704)

Abstract

Preferences are derived in part from knowledge. Knowledge, however, may be defeasible. We present an argumentation framework for deriving qualitative, multi-attribute preferences and incorporate defeasible reasoning about knowledge. Intuitively, preferences based on defeasible conclusions are not as strong as preferences based on certain conclusions, since defeasible conclusions may turn out not to hold. This introduces risk when such knowledge is used in practical reasoning. Typically, a risk prone attitude will result in different preferences than a risk averse attitude. In this paper we introduce qualitative strategies for deriving risk sensitive preferences.

Keywords

Argumentation Framework True Attribute Inference Scheme Importance Level Prefer Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Visser, W., Hindriks, K.V., Jonker, C.M.: Argumentation-based preference modelling with incomplete information. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS, vol. 6214, pp. 141–157. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: preferences and value trade-offs. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach. Artif. Intell. 148, 219–260 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dubois, D., Fargier, H., Bonnefon, J.F.: On the qualitative comparison of decisions having positive and negative features. J. Artif. Intell. Res. 32, 385–417 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bonet, B., Geffner, H.: Arguing for decisions: A qualitative model of decision making. In: Proc. UAI, pp. 98–105 (1996)Google Scholar
  6. 6.
    Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3-4), 413–436 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brewka, G.: A rank based description language for qualitative preferences. In: Proc. ECAI, pp. 303–307 (2004)Google Scholar
  8. 8.
    Bonnefon, J.F., Fargier, H.: Comparing sets of positive and negative arguments: Empirical assessment of seven qualitative rules. In: Proc. ECAI, pp. 16–20 (2006)Google Scholar
  9. 9.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Vreeswijk, G.A.W.: Abstract argumentation systems. Artif. Intell. 90(1-2), 225–279 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wietske Visser
    • 1
  • Koen V. Hindriks
    • 1
  • Catholijn M. Jonker
    • 1
  1. 1.Man-Machine Interaction GroupDelft University of TechnologyThe Netherlands

Personalised recommendations