Specification of Interlevel Relations for Agent Models in Multiple Abstraction Dimensions

  • Jan Treur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6704)


Multiagent systems for a certain application area can be modelled at multiple levels of abstraction. Interlevel relations are a means to relate models from different abstraction levels. Three dimensions of abstraction often occurring are the process abstraction, temporal abstraction, and agent cluster abstraction dimension. In this paper a unifying formalisation is presented that can be used as a framework to specify interlevel relations for any of such dimensions. The approach is illustrated by showing how a variety of different types of abstraction relations between multi-agent system models can be formally specified in a unified manner.


interlevel relation abstraction dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashby, W.R.: Design for a Brain, 2nd edn. Chapman and Hall, Boca Raton (1960)MATHGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  3. 3.
    Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future: Principles of Executable Temporal Logic. John Wiley & Sons, Chichester (1996)Google Scholar
  4. 4.
    Baum, W.M.: Understanding behaviorism: science, behavior, and culture. Harper Collins College Publishers, New York (1994)Google Scholar
  5. 5.
    Boogerd, F., Bruggeman, F., Jonker, C.M., Looren de Jong, H., Tamminga, A., Treur, J., Westerhoff, H.V., Wijngaards, W.C.A.: Interlevel Relations in Computer Science, Biology, and Psychology. Philosophical Psychology 15, 463–471 (2002)CrossRefGoogle Scholar
  6. 6.
    Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by model checking. Auton. Agent Multi-Agent Sys. 12, 239–256 (2006)CrossRefGoogle Scholar
  7. 7.
    Bosse, T., Gerritsen, C., Hoogendoorn, M., Jaffry, S.W., Treur, J.: Agent-Based versus Population-Based Simulation of Displacement of Crime: A Comparative Study. Web Intelligence and Agent Systems Journal (2011); Shorter version in: Proc. of the 8th Int. Conf. on Intelligent Agent Technology, IAT 2008, pp. 469–476. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  8. 8.
    Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J.: A Three-Dimensional Abstraction Framework to Compare Multi-Agent System Models. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS (LNAI), vol. 6421, pp. 306–319. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Bosse, T., Jonker, C.M., Meij, L., van der Sharpanskykh, A., Treur, J.: Specification and Verification of Dynamics in Agent Models. Int. J. of Coop. Inf. Systems 18, 167–193 (2009)CrossRefGoogle Scholar
  10. 10.
    Bosse, T., Jonker, C.M., Meij, L., van der Treur, J.: A Language and Environment for Analysis of Dynamics by Simulation. Intern. J. of AI Tools 16, 435–464 (2007)CrossRefGoogle Scholar
  11. 11.
    Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak, B., Treur, J.: Compositional Verification of a Multi-Agent System for One-to-Many Negotiation. Applied Intelligence 20, 95–117 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven Requirements Elaboration. In: Proc. of the 4th ACM Symposium FSE4, pp. 179–190 (1996)Google Scholar
  13. 13.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  14. 14.
    Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., Treur, J.: Organization Models and Behavioural Requirements Specification for Multi-Agent Systems. In: Demazeau, Y., Garijo, F. (eds.) Proc. of the 10th European Workshop MAAMAW 2001 (2001)Google Scholar
  15. 15.
    Forrester, J.W.: Industrial Dynamics. MIT Press, Cambridge (1961)Google Scholar
  16. 16.
    Galton, A.: Operators vs Arguments: The Ins and Outs of Reification. Synthese 150, 415–441 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jonker, C.M., Treur, J.: Compositional Verification of Multi-Agent Systems: a Formal Analysis of Pro-activeness and Reactiveness. Int. J. Coop Inf. Sys. 11, 51–92 (2002)CrossRefGoogle Scholar
  18. 18.
    Jonker, C.M., Treur, J., Wijngaards, W.C.A.: Specification, Analysis and Simulation of the Dynamics within an Organisation. Applied Intelligence 27, 131–152 (2007)CrossRefGoogle Scholar
  19. 19.
    Kelso, J.A.S.: Dynamic Patterns: The Self-Organization of Brain and Behavior. MIT Press, Cambridge (1995)Google Scholar
  20. 20.
    Kim, J.: Philosophy of Mind. Westview Press (1996)Google Scholar
  21. 21.
    Lovelock, J.: Gaia: a new look at life on earth. Oxford University Press, Oxford (1979)Google Scholar
  22. 22.
    Memon, Z.A., Treur, J.: Cognitive and Biological Agent Models for Emotion Reading. In: Proceedings of the 8th International Conference on Intelligent Agent Technology, IAT 2008, pp. 308–313. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  23. 23.
    Minsky, M.: The Society of Mind. Simon and Schuster, New York (1986)Google Scholar
  24. 24.
    Van Dyke Parunak, H., Savit, R., Riolo, R.L.: Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users’ Guide. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 10–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Port, R.F., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge (1995)Google Scholar
  26. 26.
    de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.): COMPOS 1997. LNCS, vol. 1536. Springer, Heidelberg (1998)Google Scholar
  27. 27.
    Sharpanskykh, A., Treur, J.: Relating Cognitive Process Models to Behavioural Models of Agents. In: Proceedings of the 8th International Conference on Intelligent Agent Technology, IAT 2008, pp. 330–335. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  28. 28.
    Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. North-Holland, Amsterdam (1953)MATHGoogle Scholar
  29. 29.
    Treur, J.: On the Use of Reduction Relations to Relate Different Types of Agent Models. Web Intelligence and Agent Systems 9, 81–95 (2011)Google Scholar
  30. 30.
    Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. Translated by R. N. Chapman. In: Animal Ecology. McGraw-Hill, New York (1931)Google Scholar
  31. 31.
    Wilson, W.G.: Resolving Discrepancies between Deterministic Population Models and Individual-Based Simulations. American Naturalist 151, 116–134 (1998)Google Scholar
  32. 32.
    Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Organizational Abstractions for the Analysis and Design of Multi-agent Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 235–251. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations