Improvement of Building Automation System

  • Mark Sh. Levin
  • Aliaksei Andrushevich
  • Alexander Klapproth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6704)

Abstract

The paper addresses redesign/improvement of a building automation system (BAS). For the sake of simplicity, the field bus technology on KNX example and WSN technologies on IEEE.15.4/Zig.Bee basis are examined. The basic system example consists of four parts: (1) IP/KNX Gateway, (2) IP/WSN 6LoWPAN Gateway, (3) ZigBee Wireless Sensor Network, and (4) KNX Field Bus Infrastructure. A tree-like system model (and/or morphological tree) is used. The following system improvement design schemes are examined: (i) upgrade of system components (strategy 1), (ii) extension by adding an additional part (strategy 2), and (iii) combined scheme (strategy 3). Three underlaying problems are used: (a) multicriteria ranking, (b) multicriteria multiple choice problem, and (c) combinatorial synthesis. Numerical examples illustrate the redesign processes.

Keywords

System design combinatorial optimization heuristics multicriteria decision making building automation smart home 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balasubramainan, K., Cellatoglu, A.: Improvements in home automation strategies for designing apparatus for efficient smart home. IEEE Trans. Consumer Electronics 54(4), 1681–1687 (2008)CrossRefGoogle Scholar
  2. 2.
    Buede, D.M.: Software review. Overview of MCDA software market. J. of Multi-Criteria Decision Analysis 1(1), 59–61 (1992)CrossRefGoogle Scholar
  3. 3.
    Dyer, M.E., Kayal, N., Walker, J.: A branch-and-bound algorithm for solving the multiple choice knapsack problem. J. of Comput. and Appl. Math. 11(2), 231–249 (1984)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. The Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)MATHGoogle Scholar
  5. 5.
    Helal, A., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: A programmable pervasive space. IEEE Comput. 38(3), 50–60 (2005)CrossRefGoogle Scholar
  6. 6.
    Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice multidimensional knapsack problem. J. of the Oper. Res. Soc. 55(12), 1323–1332 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Intille, S.S.: Designing a home of the future. IEEE Pervasive Computng 1(2), 80–86 (2002)Google Scholar
  8. 8.
    Jaszkiewicz, A.: On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study. Eur. J. of Oper. Res. 158(2), 418–433 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kastner, W., Neugschwandtner, G., Soucek, S., Newman, H.M.: Communication systems for building automation and control. Proc. of the IEEE 93(6), 1178–1203 (2005)CrossRefGoogle Scholar
  10. 10.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Klamroth, K., Wiecek, M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics 47, 57–76 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Levin, M.S.: Combinatorial Engineering of Decomposable Systems. Kluwer Academic Publishers, Dordrecht (1998)CrossRefMATHGoogle Scholar
  13. 13.
    Levin, M.S.: Composite Systems Decisions. Springer, New York (2006)Google Scholar
  14. 14.
    Levin, M.S.: Combinatorial optimization in system configuration design. Automation and Remote Control 70(3), 519–561 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Levin, M.S., Safonov, A.V.: Heuristic for multicriteria multiple choice knapsack problem. Artif. Intell. and Decision Making 4, 53–64 (2009) (in Russian)Google Scholar
  16. 16.
    Levin, M.S., Andrushevich, A., Klapproth, A.: Composition of management system for smart homes. Information Processes 10(1), 78–86 (2010)Google Scholar
  17. 17.
    Peine, A.: Understanding the dynamics of technological configurations: A conceptual framework and the case of Smart Home. Technological Forecasting and Social Change 76(3), 396–409 (2009)CrossRefGoogle Scholar
  18. 18.
    Rashidi, P., Cook, D.J.: Keeping the resident in the loop: Adapting the smart home to the user. IEEE Trans. SMC, Part A 39(5), 949–959 (2009)Google Scholar
  19. 19.
    Rouse, W.B.: A theory of enterprise transformation. Systems Engineering 8(4), 279–295 (2005)CrossRefGoogle Scholar
  20. 20.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic Publishers, Dordrecht (1996)CrossRefMATHGoogle Scholar
  21. 21.
    Schein, J.: An information model for building automation systems. Automation in Construction 16(2), 125–139 (2007)CrossRefGoogle Scholar
  22. 22.
    Snoonian, D.: Smart buildings. IEEE Spectrum 40(8), 18–23 (1997)CrossRefGoogle Scholar
  23. 23.
    Vrba, P., Marik, V.: Capabilities of dynamic reconfiguration of multiagent-based industrial control systems. IEEE Trans. SMC, Part A 40(2), 213–223 (2010)Google Scholar
  24. 24.
    Yamazaki, T.: The ubiquitous home. Int. J. of Smart Home 1(1), 17–22 (2007)Google Scholar
  25. 25.
    Zemel, E.: An O(n) algorithm for the linear multiple choice knapsack problem and related problems. Inform. Proc. Letters 18(3), 123–128 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mark Sh. Levin
    • 1
  • Aliaksei Andrushevich
    • 2
  • Alexander Klapproth
    • 2
  1. 1.Inst. for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.CEESAR-iHomeLabLucerne University of Applied SciencesHorwSwitzerland

Personalised recommendations