Scheduling a Single Robot in a Job-Shop Environment through Precedence Constraint Posting

  • D. Díaz
  • M. D. R-Moreno
  • A. Cesta
  • A. Oddi
  • R. Rasconi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6704)

Abstract

The paper presents recent work on using robust state-of-the-art AI Planning and Scheduling (P&S) techniques to provide autonomous capabilities in a space robotic domain. We have defined a simple robotic scenario, reduced it to a known scheduling problem which is addressed here with a constraint-based, resource-driven reasoner. We present an initial experimentation that compares different meta-heuristic algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  2. 2.
    Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Operations Research 112(1), 3–41 (1999)CrossRefMATHGoogle Scholar
  3. 3.
    Cesta, A., Oddi, A., Smith, S.F.: A constraint-based method for project scheduling with time windows. J. Heuristics 8(1), 109–136 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Cheng, C., Smith, S.F.: Generating Feasible Schedules under Complex Metric Constraints. In: Proceedings 12th National Conference on AI, AAAI 1994 (1994)Google Scholar
  5. 5.
    Laborie, P., Godard, D.: Self-Adapting Large Neighborhood Search: Application to Single-Mode Scheduling Problems. In: Proc. of the Multidisciplinary International Scheduling Conference: Theory & Applications, MISTA 2007 (2007)Google Scholar
  6. 6.
    Montanari, U.: Networks of Constraints: Fundamental Properties and Applications to Picture Processing. Information Sciences 7, 95–132 (1974)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Muscettola, N., Nayak, P., Pell, B., Williams, B.C.: Remote Agents: To Boldly Go Where No AI Systems Has Gone Before. Artificial Intelligence 103(1-2), 5–48 (1998)CrossRefMATHGoogle Scholar
  8. 8.
    Oddi, A., Rasconi, R., Cesta, A., Smith, S.F.: Iterative-Sampling Search for Job Shop Scheduling with Setup Times. In: COPLAS 2009, Proc. of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems at ICAPS (2009)Google Scholar
  9. 9.
    Oddi, A., Smith, S.F.: Stochastic Procedures for Generating Feasible Schedules. In: Proceedings 14th National Conference on AI (AAAI 1997), pp. 308–314 (1997)Google Scholar
  10. 10.
    Oddi, A., Cesta, A., Policella, N., Smith, S.F.: Combining Variants of Iterative Flattening Search. Journal of Engineering Applications of Artificial Intelligence 21, 683–690 (2008)CrossRefGoogle Scholar
  11. 11.
    Smith, S.F., Cheng, C.: Slack-Based Heuristics for Constraint Satisfaction Scheduling. In: Proceedings 11th National Conference on AI, AAAI 1993 (1993)Google Scholar
  12. 12.
    Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • D. Díaz
    • 1
  • M. D. R-Moreno
    • 1
  • A. Cesta
    • 2
  • A. Oddi
    • 2
  • R. Rasconi
    • 2
  1. 1.Universidad de AlcalaMadridSpain
  2. 2.ISTC-CNR, Italian National Research CouncilRomeItaly

Personalised recommendations