Analysis of Centrality Measures of Airport Network of India

  • Manasi Sapre
  • Nita Parekh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


In this paper we analyze the topological properties of airport network of India (ANI) using graph theoretic approach. We show that such an analysis can be useful not only in planning the infrastructure and growth of the air-traffic connectivity, but also in managing the flow of transportation during emergencies such as accidental failure of the airport, close down of the airport due to unexpected climate changes, terrorist attacks, etc. Knowledge of the connectivity pattern and load on various routes can also help in making judicious decisions for reduction of flights to contain the spread of the infectious disease.


graph theory centrality measures efficiency of a network 


  1. 1.
    Li, W., Chai, X.: Statistical analysis of airport network of China. Phys. Rev.E. 69, 46106 (2004)CrossRefGoogle Scholar
  2. 2.
    Guida, M., Funaro, M.: Topology of Italian airport network. Chaos Solitons and Fractals 31, 527–536 (2007)CrossRefGoogle Scholar
  3. 3.
    Bagler, G.: Analysis of airport network of India as a complex weighted network. Physica A 387, 2972–2980 (2008)CrossRefGoogle Scholar
  4. 4.
    Guimera, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air transportation network: Anomalous centrality, community structure and cities’ global roles. PNAS 2, 7794–7799 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Malighetti, G., Martini, G., Paleari, S., Redondi, R.: The Impacts of Airport Centrality in the EU Network and Inter-Airport Competition on Airport Efficiency. MPRA (2009)Google Scholar
  6. 6.
    Berger, A., Müller-Hannemann, M., Rechner, S., Zock, A.: Efficient computation of time-dependent centralities in air transportation networks. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 77–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    The data from the sites of major airlines (2010)Google Scholar
  9. 9.
    Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted network. Proc. Natl. Acad. Sci (USA) 101(11), 3747–3752 (2004)CrossRefGoogle Scholar
  10. 10.
    Latora, V., Marchiori, M.: Efficient Behavior of Small World Networks. Phys. Rev. Lett. 87, 198701 (2001)CrossRefGoogle Scholar
  11. 11.
    Newman, M.E.J.: The structure of scientific collaboration network. Proc. Natl. Aca. Sci. 98, 404–409 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  13. 13.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sapre, M., Parekh, N.: Analysis of Airport Network of India. In: Poster presentation at Grace Hopper Coneference in Computer Science, Bangalore (2010)Google Scholar
  15. 15.
    Wang, J., Mo, H., Wang, F., Jin, F.: Exploring the network struture and nodal centrality of China’s air transport network: A complex network approach. Journal of Transport Geography (in press) (2010)Google Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manasi Sapre
    • 1
  • Nita Parekh
    • 1
  1. 1.International Institute of Information TechnologyHyderabadIndia

Personalised recommendations