Approximation of a Coal Mass by an Ultrasonic Sensor Using Regression Rules

  • Marek Sikora
  • Marcin Michalak
  • Beata Sikora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)

Abstract

A method of approximation the mass of coal moving on a conveyor belt under the ultrasonic sensor that measures a height of coal pile is described in the paper. A process of defining a set of variables that affects the approximated coal mass is presented. A model of multiple regression and an algorithm of regression rules induction based on the M5 algorithm have been exploited to relate momentary values of the coal pile with the mass of moving coal.

Keywords

applications of data mining regression rules coal weight approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniak, J.: Conveyor belts in underground and surface mining (in Polish). Silesian University of Technology Press, Gliwice, Poland (2007)Google Scholar
  2. 2.
    Breiman, L., Friedman, R.A., Olshen, R.S., Stone, C.: Classification and Regression Trees. Wadsworth, Belmont CA (1994)MATHGoogle Scholar
  3. 3.
    Cierpisz, S., Heyduk, A.: A simulation study of coal blending control using a fuzzy logic ash monitor. Control Engineering Practice 10, 449–456 (2002)CrossRefGoogle Scholar
  4. 4.
    Czogała, E., Łęski, J.: Fuzzy and Neuro-Fuzzy Systems. Studies in Fuzziness and Soft Computing, vol. 47. Physica-Verlag, Heidelberg NewYork (2000)CrossRefMATHGoogle Scholar
  5. 5.
    Gładysiewicz, L.: Conveyor belts. Theory and calculations. Wrocław (2003) (in Polish)Google Scholar
  6. 6.
    Quinlan, J.R.: Learning with continuous classes. In: Proc. of the International Conference on Artificial Intelligence (AI 1992), World Scientific, Singapore (1992)Google Scholar
  7. 7.
    Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufman Publishers, San Mateo, California (1992)Google Scholar
  8. 8.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar
  9. 9.
    Yager, R.R., Filev, D.P.: Essential of Fuzzy Modelling and Control. John Wiley & Sons, Inc., Chichester (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marek Sikora
    • 1
    • 2
  • Marcin Michalak
    • 1
    • 3
  • Beata Sikora
    • 4
  1. 1.Silesian University of TechnologyGliwicePoland
  2. 2.Institute of Innovative Technologies EMAGKatowicePoland
  3. 3.Central Mining InstituteKatowicePoland
  4. 4.Silesian University of TechnologyGliwicePoland

Personalised recommendations