Secure Position-Based Selecting Scheme for WSN Communication

  • Pawel Szalachowski
  • Zbigniew Kotulski
  • Bogdan Ksiezopolski
Part of the Communications in Computer and Information Science book series (CCIS, volume 160)


Wireless Sensor Networks (WSNs) found applications in different hostile environments. Addressing messages to a given node or a group of nodes in these situations is a very important and difficult task. Often one should address all nodes from a given area.

In this paper we propose a new approach to the addressing problem. Our proposal is primarily destined for broadcast networks but it can be also used in other networks with specific routing protocols. The scheme is based on identification of the spatial position of a node and it is realized by fast cryptographic hash functions. Such a solution makes it possible to address all sensors from a given connected area in an easy, fast and secure way.


position-based selecting addressing cryptographic protocols wireless sensor network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications 11(6), 6–28 (2004)CrossRefGoogle Scholar
  2. 2.
    Sánchez, J.A., Ruiz, P.M., Liu, J., Stojmenovic, I.: Bandwidth-Efficient Geographic Multi-cast Routing Protocol for Wireless Sensor Networks. IEEE Sensors Journal 7(5), 627–636 (2007)CrossRefGoogle Scholar
  3. 3.
    Pietro, R., Mancini, L., Law, Y., Etalle, S., Havinga, P.: LKHW: A Directed Diffusion-Based Secure Multi-cast Scheme for Wireless Sensor Networks. In: Proc. of IEEE International Conference on Parallel Processing Workshops (2003)Google Scholar
  4. 4.
    Srinivasan, A., Wu, J.: Secure and Reliable Broadcasting in Wireless Sensor Networks using Multi-Parent Trees. Security and Communication Networks 2(3), 239–253 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, J., Liu, Y., Ni, L.M.: SIDA: self-organized ID assignment in wireless sensor networks. In: Proceedings IEEE International Conference on Mobile Ad-hoc and Sensor Systems, MASS 2007, Pisa, October 8-11 (2007)Google Scholar
  6. 6.
    Schurgers, C., Kulkarni, G., Srivastava, M.B.: Distributed On-Demand Address Assignment in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems 13(10), 1056–1065 (2002)CrossRefGoogle Scholar
  7. 7.
    Doss, R.C., Chandra, D., Pan, L., Zhou, W., Chowdhruy, M.: Address reuse in wireless sensor networks. In: Tucker, R. (ed.) Proc. of the Australian Telecommunication Networks & Applications Conf., pp. 329–333. ATNAC, Melbourne (2006)Google Scholar
  8. 8.
    Kronewitter, F.D.: Dynamic Huffman Addressing in Wireless Sensor Networks Based on the Energy Map. In: Military Communications Conference, IEEE MILCOM 2008, pp. 1–7 (November 16-19, 2008)Google Scholar
  9. 9.
    Srinivasan, A., Wu, J.: A Survey on Secure Localization in Wireless Sensor Networks. In: Furht, B. (ed.) Encyclopedia of Wireless and Mobile Communications. CRC Press, Taylor and Francis Group (2008)Google Scholar
  10. 10.
    Patwari, N., Hero, A.O., Perkins, M., Correal, N.S., O’Dea, R.J.: Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing Processing 51(8), 2137–2148 (2003)Google Scholar
  11. 11.
    Nasipuri, A., Li, K.: A Directionality based Location Discovery Scheme for Wireless Sensor Networks. In: Proceedings of the First ACM International Workshop on Wireless Sensor Networks and Applications (WSNA 2002), in conjunction with ACM Mobicom 2002 (September 28, 2002)Google Scholar
  12. 12.
    Stoleru, R., Stankovic, J.: Probability grid: a location estimation scheme for wireless sensor networks. In: First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, pp. 430–438 (2004)Google Scholar
  13. 13.
    Ma, D., Er, M.J., Wang, B., Lim, H.B.: Range-free wireless sensor networks localization based on hop-count quantization. Telecommunication Systems. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Lazos, L., Poovendran, R.: SeRLoc: Robust localization for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 1(1), 73–100 (2005)CrossRefGoogle Scholar
  15. 15.
    Lazos, L., Poovendran, R., Čapkun, S.: ROPE: robust position estimation in wireless sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, California, April 24-27 (2005)Google Scholar
  16. 16.
    Liu, D., Ning, P., Liu, A., Wang, C., Du, W.K.: Attack-Resistant Location Estimation in Wireless Sensor Networks. ACM Transactions on Information and System Security (TISSEC) 11(4), 1–39 (2008)CrossRefGoogle Scholar
  17. 17.
    Szalachowski, P., Ksiezopolski, B., Kotulski, Z.: CMAC, CCM and GCM/GMAC: Advanced modes of operation of symmetric block ciphers in wireless sensor networks. Information Processing Letters 110(7), 247–251 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gong, L.: Variations on the Themes of Message Freshness and Replay or, the Difficulty of Devising Formal Methods to Analyze Cryptographic Protocols. In: 6th IEEE Comp. Security Foundations Workshop, pp. 131–136 (1993)Google Scholar
  19. 19.
    Szalachowski, P., Ksiezopolski, B., Kotulski, Z.: On Authentication Method Impact upon Data Sampling Delay in Wireless Sensor Networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 280–289. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pawel Szalachowski
    • 1
  • Zbigniew Kotulski
    • 1
    • 2
  • Bogdan Ksiezopolski
    • 3
  1. 1.Institute of Fundamental Technological Research of PASWarsawPoland
  2. 2.Institute of Telecommunications of WUTWarsawPoland
  3. 3.Institute of Computer ScienceMaria Curie-Sklodowska UniversityLublinPoland

Personalised recommendations