Towards Compositional Design and Evaluation of Preference Elicitation Interfaces

  • Alina Pommeranz
  • Pascal Wiggers
  • Catholijn M. Jonker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6776)


Creating user preference models has become an important endeavor for HCI. Forming a preference profile is a constructive process in the user’s mind depending on use context as well as a user’s thinking and information processing style. We believe a one-style-fits-all approach to the design of these interfaces is not sufficient in supporting users in constructing an accurate profile. We present work towards a compositional design approach that will lead designers in the creation of preference elicitation interfaces. The core of the approach is a set of elements created based on design principles and cognitive styles of the user. Given the use context of the preference elicitation suitable elements can be identified and strategically combined into interfaces. The interfaces will be evaluated in an iterative, compositional way by target users to reach a desired outcome interface.


Compositional Design Preference Elicitation Interface Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bettman, J.R., Luce, M.F., Payne, J.W.: Constructive consumer choice processes. Journal of Consumer Research 25(3), 187–217 (1998)CrossRefGoogle Scholar
  2. 2.
    Burke, R.: Knowledge-based recommender systems. In: Encyclopedia of Library and Information Systems, vol. 69 (2000)Google Scholar
  3. 3.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Carenini, G., Loyd, J.: Valuecharts: analyzing linear models expressing preferences and evaluations. In: AVI 2004: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 150–157 (2004)Google Scholar
  5. 5.
    Carenini, G., Poole, D.: Constructed preferences and value-focused thinking: Implications for AI research on preference elicitation. Technical report (2002)Google Scholar
  6. 6.
    Chen, L., Pu, P.: Survey of preference elicitation methods. Technical report, Swiss Federal Institute of Technology, Lausanne (2004)Google Scholar
  7. 7.
    Curhan, J.R., Neale, M.A., Ross, L.D.: Dynamic Valuation: Preference Changes in the Context of Face-to-face Negotiation. Journal of Experimental Social Psychology 40, 142–151 (2004)CrossRefGoogle Scholar
  8. 8.
    Faltings, P.P., Viappiani, P., Torrens, M.: Designing example-critiquing interaction. In: IUI 2004: Proceedings of the 9th International Conference on Intelligent User Interfaces, pp. 22–29 (2004)Google Scholar
  9. 9.
    Fano, A., Kurth, S.W.: Personal choice point: helping users visualize what it means to buy a BMW. In: IUI 2003, USA,, pp. 46–52 (2003)Google Scholar
  10. 10.
    Ferguson, G., Allen, J.: Mixed-initiative systemsfor collaborative problem solving. AI magazine 28(2) (2006)Google Scholar
  11. 11.
    Fischer, G.W., Carmon, Z., Ariely, D., Zauberman, G.: Goal-Based Construction of Preferences: Task Goals and the Prominence Effect. Management Science 45(8), 1057–1075 (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  13. 13.
    Gregorc, A.F.: The Mind Styles Model: Theory, Principles, and Practice. AFG (2006)Google Scholar
  14. 14.
    Heineman, G.T., Councill, W.T.: Component based software engineering: putting the pieces together. ACM Press, New York (2001)Google Scholar
  15. 15.
    Johnson, E.J., Steffel, M., Goldstein, D.G.: Making better decisions: from measuring to constructing preferences. Health Psychology 24(8), 17–22 (2005)CrossRefGoogle Scholar
  16. 16.
    Keeney, R.: Value-Focused Thinking: A Path to Creative Decision Making. Harvard University Press, Cambridge (1992)Google Scholar
  17. 17.
    Muller, M.J.: Pictive—an exploration in participatory design. In: CHI 1991, New York, NY, USA, pp. 225–231 (1991)Google Scholar
  18. 18.
    Payne, J.W., Bettman, J.R., Schkade, D.A.: Measuring constructed preferences: Towards a building code. Journal of Risk and Uncertainty 19(1-3), 243–270 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Payne, J.W., Bettman, J.R., Johnson, E.J.: The Adaptive Decision Maker. Cambridge University Press, Cambridge (1999)Google Scholar
  20. 20.
    Pommeranz, A., Wiggers, P., Jonker, C.: User-centered design of preference elicitation interfaces for decision support. In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 14–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Pu, P., Chen, L.: Trust-inspiring explanation interfaces for recommender systems. Knowledge-Based Systems 20(6), 542–556 (2007)CrossRefGoogle Scholar
  22. 22.
    Pu, P., Chen, L.: User-Involved Preference Elicitation for Product Search and Recommender Systems. AI Magazine 29(4), 93–103 (2008)CrossRefGoogle Scholar
  23. 23.
    Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: learning new user preferences in recommender systems. In: IUI 2002, USA, pp. 127–134 (2002)Google Scholar
  24. 24.
    Shearin, S., Lieberman, H.: Intelligent profiling by example. In: IUI 2001, New York, NY, USA, pp. 145–151 (2001)Google Scholar
  25. 25.
    Shiell, A., Hawe, P., Seymor, J.: Values and preferences are not necessarily the same. Health Economics 6(5), 515–518 (1997)CrossRefGoogle Scholar
  26. 26.
    Shiv, B., Fedorikhin, A.: Heart and mind in conflict: the interplay of affect and cognition in consumer decision making. Journal of Consumer Research 26(3), 278–292 (1999)CrossRefGoogle Scholar
  27. 27.
    Simon, D., Krawczyk, D.C., Holyoak, K.J.: Construction of Preferences by Constraint Satisfaction. Psychological Science 15(5), 331–336 (2004)CrossRefGoogle Scholar
  28. 28.
    Sinha, R., Swearingen, K.: The role of transparency in recommender systems. In: CHI 2002 Extended Abstracts on Human Factors in Computing Systems, pp. 830–831 (2002)Google Scholar
  29. 29.
    Stolze, M., Strobel, M.: Dealing with learning in ecommerce product navigation and decision support: the teaching salesman problem. In: MCPC 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alina Pommeranz
    • 1
  • Pascal Wiggers
    • 1
  • Catholijn M. Jonker
    • 1
  1. 1.Section Man-Machine InteractionDelft University of TechnologyDelftThe Netherlands

Personalised recommendations