Advertisement

Cognitive Engineering of Automated Assembly Processes

  • Marcel Ph. Mayer
  • Barbara Odenthal
  • Carsten Wagels
  • Sinem Kuz
  • Bernhard Kausch
  • Christopher M. Schlick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6781)

Abstract

A novel approach to cognitive automation of assembly processes is introduced. An experimental assembly cell with two robots has been designed to proof the concept. The cell’s numerical control – termed a cognitive control unit (CCU) – is able to simulate human information processing at a rule-based level of cognitive control on the basis of the SOAR cognitive architecture. Thus the CCU can plan assembly processes autonomously and can react to changes in assembly processes due to increasing number of products that have to be assembled in a large variety in production space as well as changing or uncertain conditions. To develop a “Humanoid-Mode” for automated assembly systems similar to the H-metaphor for automated vehicles human assembly strategies where identified in empirical investigations and formulated as production rules. When the CCU is enriched with these production rules underlying human heuristics, a significant increase of the predictability of a robot when assembling products can be achieved.

Keywords

Cognitive Automation SOAR Assembly Joint Cognitive Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bainbridge, L.: Ironies of Automation. In: Rasmussen, J., Duncan, K., Leplat, J. (eds.) New Technology and Human Error, Wiley, Chichester (1987)Google Scholar
  2. 2.
    Flemisch, F.O., Adams, C.A., Conway, S.R., Goodrich, K.H., Palmer, M.T., Schutte, P.C.: The H-Metaphor as a Guideline for Vehicle Automation and Interaction. NASA/TM—2003-212672 (2003) Google Scholar
  3. 3.
    Gazzola, V., Rizzolatti, G., Wicker, B., Keysers, C.: The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage 35, 1674–1684 (2007)CrossRefGoogle Scholar
  4. 4.
    Hollnagel, E., Woods, D.D.: Joint Cognitive Systems: Foundations of Cognitive Systems Engineering. Taylor & Francis Group, Boca Raton (2005)CrossRefGoogle Scholar
  5. 5.
    Kempf, T., Herfs, W., Brecher, C.: Cognitive Control Technology for a Self-Optimizing Robot Based Assembly Cell. In: Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, America Society of Mechanical Engineers, U.S (2008)Google Scholar
  6. 6.
    Kinkel, S., Friedwald, M., Hüsing, B., Lay, G., Lindner, R.: Arbeiten in der Zukunft, Strukturen und Trends der Industriearbeit. Studien des Büros für Technikfolgen-Abschätzung bei Deutschen Bundestag – 27. edition sigma, Berlin (2008) (in German)Google Scholar
  7. 7.
    Klocke, F.: Production Technology in High-Wage Countries – From Ideas of Today to Products of Tomorrow. In: Schlick, C.M. (ed.) Industrial Engineering and Ergonomics in Engineering Design, Manufacturing and Service – Trends, Visions and Perspectives, Springer, Berlin (2009)Google Scholar
  8. 8.
    Langley, P., Laired, J.E., Rogers, S.: Cognitive Architectures: Research Issues and Challenges. Cognitive Systems Research 10(2), 141–160 (2009)CrossRefGoogle Scholar
  9. 9.
    Lehman, J., Laird, J., Rosenbloom, P.: A gentle introduction to soar, an architecture for human cognition: 2006 update (2006), http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf (Retrieved May 17, 2010)
  10. 10.
    Marshall, S.P.: Cognitive Models of Tactical Decision Making. In: Karowski, W., Salvendy, G. (eds.) Proceedings of the 2nd International Conference on Applied Human Factors and Ergonomic (AHFE) Las Vegas, Nevada, USA, July 14–17 (2008)Google Scholar
  11. 11.
    Mayer, M.P., Odenthal, B., Faber, M., Kabuß, W., Jochems, N., Schlick, C.M.: Cognitive Engineering for Self-Optimizing Assembly Systems. In: Karwowski, W., Salvendy, G. (eds.) Advances in Human Factors, Ergonomics, and Safety in Manufacturing and Service Industries. CRC Press, USA (2010)Google Scholar
  12. 12.
    Mayer, M.P., Odenthal, B., Faber, M., Kabuß, W., Kausch, B., Schlick, C.M.: Simulation of Human Cognition in Self-Optimizing Assembly Systems. In: Proceedings of 17th World Congress on Ergonomics IEA 2009, Beijing (2009)Google Scholar
  13. 13.
    Mayer, M.P., Odenthal, B., Grandt, M., Schlick, C.M.: Task-Oriented Process Planning for Cognitive Production Systems using MTM. In: Karowski, W., Salvendy, G. (eds.) Proceedings of the 2nd International Conference on Applied Human Factors and Ergonomic (AHFE). USA Publishing, USA (2008)Google Scholar
  14. 14.
    Norros, L., Salo, L.: Design of joint systems: a theoretical challenge for cognitive system engineering. Cognition, Technology and Work 11, 43–56 (2009)CrossRefGoogle Scholar
  15. 15.
    Onken, R., Schulte, A.: System-ergonomic design of cognitive automation. Studies in Computational Intelligence. Springer, Berlin (2010)CrossRefGoogle Scholar
  16. 16.
    Putzer, H.J.: Ein uniformer Architekturansatz für kognitive Systeme und seine Umsetzung in ein operatives Framework. Köster, Berlin (2004) (in German) Google Scholar
  17. 17.
    Rasmussen, J.: Information Processing and Human-Machine Interaction. An Approach to Cognitive Engineering. North-Holland, New York (1986)Google Scholar
  18. 18.
    Wiendahl, H.P., ElMaraghy, H.A., Nyhuis, P., Zäh, M.F., Wiendahl, H.H., Duffie, N., Brieke, M.: Changeable Manufacturing. Classification, Design and Operation. Annals of the CIRP 56(2), 783–809 (2007)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Sharifi, H.: A methodology for achieving agility in manufacturing organizations. Int. J. Oper. Prod. Manage. 20(4), 496–512 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marcel Ph. Mayer
    • 1
  • Barbara Odenthal
    • 1
  • Carsten Wagels
    • 2
  • Sinem Kuz
    • 1
  • Bernhard Kausch
    • 1
  • Christopher M. Schlick
    • 1
  1. 1.Institute of Industrial Engineering and Ergonomics of RWTH Aachen UniversityAachenGermany
  2. 2.Laboratory for Machine Tools and Production Engineering of RWTHAachen UniversityAachenGermany

Personalised recommendations