A Perceptual Memory System for Affordance Learning in Humanoid Robots

  • Marc Kammer
  • Marko Tscherepanow
  • Thomas Schack
  • Yukie Nagai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6792)

Abstract

Memory constitutes an essential cognitive capability of humans and animals. It allows them to act in very complex, non-stationary environments. In this paper, we propose a perceptual memory system, which is intended to be applied on a humanoid robot learning affordances. According to the properties of biological memory systems, it has been designed in such a way as to enable life-long learning without catastrophic forgetting. Based on clustering sensory information, a symbolic representation is derived automatically. In contrast to alternative approaches, our memory system does not rely on pre-trained models and works completely unsupervised.

Keywords

Cognitive robotics artificial memory life-long learning affordances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anagnostopoulos, G.C., Georgiopoulos, M.: Hypersphere ART and ARTMAP for unsupervised and supervised incremental learning. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), vol. 6, pp. 59–64 (2000)Google Scholar
  2. 2.
    Baxter, P., Browne, W.: Memory as the substrate of cognition: A developmental cognitive robotics perspective. In: Johansson, B., Sahin, E., Balkenius, C. (eds.) Proceedings of the International Conference on Epigenetic Robotics (EpiRob), pp. 19–26 (2010)Google Scholar
  3. 3.
    Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4(6), 759–771 (1991)CrossRefGoogle Scholar
  4. 4.
    Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties. Neural Networks 22(5-6), 568–578 (2009)CrossRefGoogle Scholar
  5. 5.
    Şahin, E., Çakmak, M., Doğar, M.R., Uğur, E., Üçoluk, G.: To afford or not to afford: A new formalization of affordances toward affordance-based robot control. Adaptive Behavior 15(4), 447–472 (2007)CrossRefGoogle Scholar
  6. 6.
    Gibson, J.J.: The theory of affordances. Perceiving, Acting, and Knowing, 67–82 (1977)Google Scholar
  7. 7.
    Goldstone, R.L., Kersten, A.: Concepts and categorization. In: Healy, A.F., Proctor, R.W. (eds.) Comprehensive Handbook of Psychology. Experimental psychology, vol. 4, pp. 599–621. Wiley, Chichester (2003)Google Scholar
  8. 8.
    Grossberg, S.: Competitive learning: From interactive activation to adaptive resonance. Cognitive Science 11, 23–63 (1987)CrossRefGoogle Scholar
  9. 9.
    Hanheide, M., Wrede, S., Lang, C., Sagerer, G.: Who am I talking with? A face memory for social robots. In: IEEE International Conference on Robotics and Automation, pp. 3660–3665. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  10. 10.
    Kandel, E.R.: The molecular biology of memory storage: a dialogue between genes and synapses. Science 294(5544), 1030–1038 (2001)CrossRefGoogle Scholar
  11. 11.
    Kirstein, S., Wersing, H., Körner, E.: A biologically motivated visual memory architecture for online learning of objects. Neural Networks 21(1), 65–77 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Markowitsch, H.J., Halligan, P.W., Kischka, U., Marshall, J.C.: Functional neuroanatomy of learning and memory, pp. 724–741. University Press (2003)Google Scholar
  13. 13.
    Montesano, L., Lopes, M., Bernardino, A., Santos-Victor, J.: Learning Object Affordances: From Sensory–Motor Coordination to Imitation. IEEE Transactions on Robotics 24(1), 15–26 (2008)CrossRefGoogle Scholar
  14. 14.
    Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science, 701–703 (1971)Google Scholar
  15. 15.
    Sun, R.: Robust reasoning: Integrating rule-based and similarity-based reasoning. Artificial Intelligence 75(2), 241–295 (1995)CrossRefGoogle Scholar
  16. 16.
    Sun, R., Zhang, X., Mathews, R.: Capturing human data in a letter counting task: Accessibility and action-centeredness in representing cognitive skills. Neural Networks 22(1), 15–29 (2009)CrossRefGoogle Scholar
  17. 17.
    Tscherepanow, M.: TopoART: A topology learning hierarchical ART network. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 157–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Ugur, E., Sahin, E., Oztop, E.: Affordance learning from range data for multi-step planning. In: Proceedings of the International Conference on Epigenetic Robotics (EpiRob), pp. 177–184 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marc Kammer
    • 1
    • 2
  • Marko Tscherepanow
    • 1
    • 2
  • Thomas Schack
    • 1
    • 3
  • Yukie Nagai
    • 1
    • 4
  1. 1.CITEC, Cognitive Interaction Technology, Center of ExcellenceBielefeld UniversityBielefeldGermany
  2. 2.Applied Informatics, Faculty of TechnologyBielefeld UniversityBielefeldGermany
  3. 3.Neurocognition and Action, Faculty of Psychology and Sport SciencesBielefeld UniversityBielefeldGermany
  4. 4.Graduate School of EngineeringOsaka UniversitySuita OsakaJapan

Personalised recommendations