Manifold Learning for Visualization of Vibrational States of a Rotating Machine

  • Ignacio Díaz
  • Abel A. Cuadrado
  • Alberto B. Diez
  • Manuel Domínguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6792)

Abstract

This paper describes a procedure based on the use of manifold learning algorithms to visualize periodic –or nearly periodic– time series produced by processes with different underlying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds low dimensional structures in the feature space and obtains projections on a low dimensional space for visualization. This approach is applied on vibration data of an electromechanical rotating machine to visualize different vibration conditions under two kinds of asymmetries, using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases, the methods yield consistent results and produce insightful visualizations, suggesting future developments and application in engineering problems.

Keywords

manifold learning dimensionality reduction vibration analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation 15(6), 1373–1396 (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Benbouzid, M.E.H.: A review of induction motors signature analysis as a medium for faults detection. IEEE Transactions on Industrial Electronics 47(5), 984–993 (2000)CrossRefGoogle Scholar
  3. 3.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Mathematics of Computation 19(1), 297–301 (1965)CrossRefMATHGoogle Scholar
  4. 4.
    Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks 8(1), 148–154 (1997)CrossRefGoogle Scholar
  5. 5.
    Donoho, D., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences 100(10), 5591 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Hyvarinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999), http://www.cis.hut.fi/aapo/pub.html
  7. 7.
    Jollife, I.: Principal component analysis (1986)Google Scholar
  8. 8.
    Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences, 3rd edn., vol. 30. Springer, New York (2001)MATHGoogle Scholar
  9. 9.
    Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6 2(11), 559–572 (1901)CrossRefMATHGoogle Scholar
  10. 10.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  11. 11.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C 18(5), 401–409 (1969)CrossRefGoogle Scholar
  12. 12.
    Schoen, R.R., Habetler, T.G., Kamran, F., Bartheld, R.G.: Motor bearing damage detection using stator current monitoring. IEEE Transactions on Industry Applications 31(6), 1224–1279 (1995)Google Scholar
  13. 13.
    Tavner, P.J., Penman, J.: Condition Monitoring of Electrical Machines. Research Studies Press Ltd., John Wiley and Sons Inc. (1987)Google Scholar
  14. 14.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  15. 15.
    Torgerson, W.: Theory and Methods of Scaling. Wiley, Chichester (1958)Google Scholar
  16. 16.
    Zhang, T., Tao, D., Li, X., Yang, J.: Patch alignment for dimensionality reduction. IEEE Transactions on Knowledge and Data Engineering, 1299–1313 (2008)Google Scholar
  17. 17.
    Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ignacio Díaz
    • 1
  • Abel A. Cuadrado
    • 1
  • Alberto B. Diez
    • 1
  • Manuel Domínguez
    • 2
  1. 1.Edificio departamentalArea de Ingeniería de Sistemas y AutomáticaGijónSpain
  2. 2.Instituto de Automática y FabricaciónUniversidad de LeónSpain

Personalised recommendations