1-Penalized Linear Mixed-Effects Models for BCI

  • Siamac Fazli
  • Márton Danóczy
  • Jürg Schelldorfer
  • Klaus-Robert Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6791)


A recently proposed novel statistical model estimates population effects and individual variability between subgroups simultaneously, by extending Lasso methods. We apply this ℓ1-penalized linear regression mixed-effects model to a large scale real world problem: by exploiting a large set of brain computer interface data we are able to obtain a subject-independent classifier that compares favorably with prior zero-training algorithms. This unifying model inherently compensates shifts in the input space attributed to the individuality of a subject. In particular we are now able to differentiate within-subject and between-subject variability. A deeper understanding both of the underlying statistical and physiological structure of the data is gained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrew, G., Gao, J.: Scalable training of L 1-regularized log-linear models. In: Proceedings of the 24th international conference on Machine learning (ICML 2007), pp. 33–40. ACM Press, New York (2007)Google Scholar
  2. 2.
    Blankertz, B., Curio, G., Müller, K.R.: Classifying single trial EEG: Towards brain computer interfacing. In: Diettrich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Inf. Proc. Systems (NIPS 2001), vol. 14, pp. 157–164 (2002)Google Scholar
  3. 3.
    Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst. Rehabil. Eng. 14, 147–152 (2006)CrossRefGoogle Scholar
  4. 4.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc. Magazine 25(1), 41–56 (2008)CrossRefGoogle Scholar
  5. 5.
    Dornhege, G., Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.R. (eds.): Toward Brain-Computer Interfacing. MIT Press, Cambridge, MA (2007)Google Scholar
  6. 6.
    Fazli, S., Grozea, C., Danoczy, M., Blankertz, B., Popescu, F., Muller, K.R.: Subject independent EEG-based BCI decoding. In: Advances in Neural Information Processing Systems 22, pp. 513–521. MIT Press, Cambridge (2009)Google Scholar
  7. 7.
    Fazli, S., Danóczy, M., Schelldorfer, J., Müller, K.R.: ℓ1-penalized Linear Mixed-Effects Models for high dimensional data with application to BCI. Neuroimage (2011), (in press)Google Scholar
  8. 8.
    Krauledat, M., Tangermann, M., Blankertz, B., Müller, K.R.: Towards zero training for brain-computer interfacing. PLoS ONE 3, e2967 (2008)Google Scholar
  9. 9.
    Pinheiro, J.C., Bates, D.M.: Mixed-Effects Models in S and S-Plus. Springer, New York (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Schelldorfer, J., Bühlmann, P.: Estimation for high-dimensional linear mixed-effects models using ℓ1-penalization. arXiv preprint 1002.3784 (2010)Google Scholar
  11. 11.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 58, 267–288 (1996)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Siamac Fazli
    • 1
  • Márton Danóczy
    • 1
  • Jürg Schelldorfer
    • 2
  • Klaus-Robert Müller
    • 1
  1. 1.Berlin Institute of TechnologyBerlinGermany
  2. 2.ETH ZürichZürichSwitzerland

Personalised recommendations