Visually Exploring Multivariate Trends in Patient Cohorts Using Animated Scatter Plots

  • Alexander Rind
  • Wolfgang Aigner
  • Silvia Miksch
  • Sylvia Wiltner
  • Margit Pohl
  • Felix Drexler
  • Barbara Neubauer
  • Nikolaus Suchy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6779)

Abstract

The effectiveness of animation in visualization is an interesting research topic that led to contradicting results in the past. On top of that, we are facing three additional challenges when exploring patient cohorts: irregular sampling, data wear, and data sets covering different portions of time. We present TimeRider, an improved animated scatter plot for cohorts of diabetes patients that tackles these challenges along with its evaluation with physicians. Results show that animation does support physicians in their work and provide further domain-specific evidence in the discussion on the effectiveness of animation.

Keywords

Information Visualization animation time medical data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visualizing time-oriented data—a systematic view. Computers & Graphics 31(3), 401–409 (2007)CrossRefGoogle Scholar
  2. 2.
    Bartram, L.: Perceptual and interpretative properties of motion for information visualization. In: Proc. Workshop New Paradigms in Information Visualization and Manipulation, pp. 3–7. ACM, New York (1997)Google Scholar
  3. 3.
    Boren, T.M., Ramey, J.: Thinking aloud: Reconciling theory and practice. IEEE Trans. Professional Communication 43(3), 261–278 (2000)CrossRefGoogle Scholar
  4. 4.
    Burmester, M., Mast, M., Tille, R., Weber, W.: How users perceive and use interactive information graphics: An exploratory study. In: Proc. IEEE Conf. Information Visualization (IV), pp. 361–368 (2010)Google Scholar
  5. 5.
    Carpendale, S.: Evaluating information visualizations. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 19–45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ericsson, K.A., Simon, H.A.: Protocol Analysis, 2nd edn. MIT Press, Cambridge (1993)Google Scholar
  7. 7.
    Forsell, C., Johansson, J.: An heuristic set for evaluation in information visualization. In: Proc. Int. Conf. Advanced Visual Interfaces, pp. 199–206. ACM, New York (2010)CrossRefGoogle Scholar
  8. 8.
    Griffin, A.L., MacEachren, A.M., Hardisty, F., Steiner, E., Li, B.: A comparison of animated with static small multiple maps for visually identifying space-time clusters. Annals of the Association of American Geographers 96(4), 740–753 (2006)CrossRefGoogle Scholar
  9. 9.
    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graphics 5(2), 110–141 (1986)CrossRefGoogle Scholar
  10. 10.
    Marsh, S.L., Dykes, J., Attilakou, F.: Evaluating a geovisualization prototype with two approaches: Remote instructional vs. face-to-face exploratory. In: Proc. IEEE Conf. Information Visualization (IV), pp. 310–315 (2006)Google Scholar
  11. 11.
    Nakakoji, K., Takashima, A., Yamamoto, Y.: Cognitive effects of animated visualization in exploratory visual data analysis. In: Proc. IEEE Conf. Information Visualization (IV), pp. 77–84 (2001)Google Scholar
  12. 12.
    Nielsen, J.: Usability Engineering. Morgan Kaufmann, San Francisco (1993)MATHGoogle Scholar
  13. 13.
    Nowell, L., Hetzler, E., Tanasse, T.: Change blindness in information visualization: A case study. In: Proc. IEEE Symp. Information Visualization, pp. 15–22 (2001)Google Scholar
  14. 14.
    Preece, J., Rogers, Y., Sharp, H.: Interaction Design: Beyond Human-Computer Interaction. John Wiley & Sons, New York (2002)Google Scholar
  15. 15.
    Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effectiveness of animation in trend visualization. IEEE Trans. Visualization and Computer Graphics 14(6), 1325–1332 (2008)CrossRefGoogle Scholar
  16. 16.
    Rosling, H.: Visual technology unveils the beauty of statistics and swaps policy from dissemination to access. IAOS Statistical Journal 24(1-2), 103–104 (2007)Google Scholar
  17. 17.
    Tversky, B., Morrison, J.B., Betrancourt, M.: Animation: can it facilitate? Int. J. Human-Computer Studies 57, 247–262 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Rind
    • 1
  • Wolfgang Aigner
    • 1
    • 2
  • Silvia Miksch
    • 1
    • 2
  • Sylvia Wiltner
    • 2
  • Margit Pohl
    • 2
  • Felix Drexler
    • 3
  • Barbara Neubauer
    • 2
  • Nikolaus Suchy
    • 2
  1. 1.Danube University KremsAustria
  2. 2.Vienna University of TechnologyAustria
  3. 3.Landesklinikum KremsAustria

Personalised recommendations