Fast Correlation Attacks: Methods and Countermeasures

  • Willi Meier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6733)

Abstract

Fast correlation attacks have considerably evolved since their first appearance. They have lead to new design criteria of stream ciphers, and have found applications in other areas of communications and cryptography.

In this paper, a review of the development of fast correlation attacks and their implications on the design of stream ciphers over the past two decades is given.

Keywords

stream cipher cryptanalysis correlation attack 

References

  1. 1.
    Ahmadian, Z., Mohajeri, J., Salmasizadeh, M., Hakala, R., Nyberg, K.: A practical distinguisher for the Shannon cipher. Journal of Systems and Software 83(4), 543–547 (2010)CrossRefGoogle Scholar
  2. 2.
    Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of grain. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bluetooth SIG, Specification of the Bluetooth system, Version 1.1 (February 22, 2001), http://www.bluetooth.com/
  4. 4.
    Canteaut, A., Trabbia, M.: Improved Fast Correlation Attacks Using Parity-Check Equations of Weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 573–588. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of Rounds, sequences of linear factors in block ciphers. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)Google Scholar
  6. 6.
    Chose, P., Joux, A., Mitton, M.: Fast Correlation Attacks: An Algorithmic Point of View. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Coppersmith, D., Halevi, S., Jutla, C.S.: Cryptanalysis of stream ciphers with linear masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532. Springer, Heidelberg (2002), http://eprint.iacr.org/2002/020 CrossRefGoogle Scholar
  8. 8.
    Courtois, N., Meier, W.: Algebraic attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cusick, T., Stanica, P.: Cryptographic Boolean Functions and Applications. Academic Press, London (2009)MATHGoogle Scholar
  10. 10.
    Edel, Y., Klein, A.: Computational aspects of fast correlation attacks (2010) (preprint)Google Scholar
  11. 11.
    Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Ekdahl, P., Meier, W., Johansson, T.: Predicting the Shrinking Generator with Fixed Connections. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 330–344. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Englund, H., Johansson, T.: A New Simple Technique to Attack Filter Generators and Related Ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 39–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Evertse, J.-H.: Linear structures in block ciphers. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 249–266. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  15. 15.
    Finiasz, M., Vaudenay, S.: When Stream Cipher Analysis Meets Public-Key Cryptography. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 266–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Fossorier, M.P.C., Mihaljević, M.J., Imai, H., Cui, Y., Matsuura, K.: An Algorithm for Solving the LPN Problem and Its Application to Security Evaluation of the HB Protocols for RFID Authentication. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 48–62. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)MATHGoogle Scholar
  18. 18.
    Golić, J.: Computation of low-weight parity-check polynomials. Electronic Letters 32(21), 1981–1982 (1996)Google Scholar
  19. 19.
    Golić, J.: Linear models for keystream generators. IEEE Trans. on Computers 45, 41–49 (1996)CrossRefMATHGoogle Scholar
  20. 20.
    Golić, J.: Correlation properties of a general binary combiner with memory. Journal of Cryptology 9, 111–126 (1996)CrossRefMATHGoogle Scholar
  21. 21.
    Golić, J., Salmasizadeh, M., Dawson, E.: Fast correlation attacks on the summation generator. Journal of Cryptology 13, 245–262 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Golić, J.D., Bagini, V., Morgari, G.: Linear Cryptanalysis of Bluetooth Stream Cipher. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 238–255. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Hawkes, P., Rose, G.: Exploiting Multiples of the Connection Polynomial in Word-Oriented Stream Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 303–316. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Johansson, T., Jönsson, F.: Fast correlation attacks through reconstruction of linear polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 300–315. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Jönsson, F., Johansson, T.: A fast correlation attack on LILI-128. Inf. Process. Lett. 81(3), 127–132 (2002)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Jönsson, F.: Some results on fast correlation attacks, Thesis, Lund University, SwedenGoogle Scholar
  27. 27.
    Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memory. Journal of Cryptology 10, 111–147 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Levieil, É., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    MacWilliams, F.J., Sloane, N.J.: The theory of error-correcting codes. North Holland, Amsterdam (1977)Google Scholar
  30. 30.
    Maitra, S., Gupta, K.C., Venkateswarlu, A.: Results on multiples of primitive polynomials and their products over GF(2). Theor. Comput. Sci. 341(1-3), 311–343 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory 15, 122–127 (1969)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. Journal of Cryptology 1, 159–176 (1989)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  34. 34.
    Meier, W., Staffelbach, O.: Correlation properties of combiners with memory in stream ciphers. Journal of Cryptology 5, 67–86 (1992)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Mihaljević, M.J., Fossorier, M.P.C., Imai, H.: Fast correlation attack algorithm with list decoding and an application. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 196–210. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  36. 36.
    Mihaljevic, M., Fossorier, M., Imai, H.: On decoding techniques for cryptanalysis of certain encryption algorithms. IEICE Trans. Fundamentals  E84-A(4), 919–930 (2001)Google Scholar
  37. 37.
    Mobile Phone Security Algorithms - New Version, http://gsmworld.com/our-work/programmes-and-initiatives/
  38. 38.
    Mossel, E., Shpilka, A., Trevisan, L.: On ε-biased Generators in NC 0. Random Struct. Algorithms 29(1), 56–81 (2006)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Nyberg, K.: Constructions of Bent Functions and Difference Sets. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 151–160. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  40. 40.
    Nyberg, K.: Perfect Nonlinear S-Boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  41. 41.
    Robshaw, M., Billet, O.: New Stream Cipher Designs. LNCS, vol. 4986. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  42. 42.
    Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory (A) 20, 300–305 (1976)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Rueppel, R.A.: Correlation immunity and the summation generator. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 260–272. Springer, Heidelberg (1986)Google Scholar
  44. 44.
    Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 27, 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. on Computers C-34, 81–85 (1985)CrossRefGoogle Scholar
  46. 46.
    Siegenthaler, T.: Correlation immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inform. Theory 30, 776–780 (1984)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  48. 48.
    Wang, D., Lu, P.: Geometrically Invariant Watermark Using Fast Correlation Attacks. In: Proceedings of IIH-MSP 2006, pp. 465–468. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  49. 49.
    Zeng, K., Huang, M.: On the linear syndrome method in cryptoanalysis. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 469–478. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  50. 50.
    Zeng, K., Yang, C.H., Rao, T.R.N.: An improved linear syndrome algorithm in cryptanalysis with applications. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 34–47. Springer, Heidelberg (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Willi Meier
    • 1
  1. 1.FHNWSwitzerland

Personalised recommendations